Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aryehky/arduino
🚀 C++ Machine Learning Project: Digit Recognition with Support Vector Machine (SVM) 🖥️ This project is a robust implementation of digit recognition using Support Vector Machine (SVM) in C++. The SVM algorithm, a powerful supervised learning technique, is employed to classify handwritten digits from the famous MNIST dataset.
https://github.com/aryehky/arduino
cpp data-visualization machine-learning preprocessing
Last synced: 28 days ago
JSON representation
🚀 C++ Machine Learning Project: Digit Recognition with Support Vector Machine (SVM) 🖥️ This project is a robust implementation of digit recognition using Support Vector Machine (SVM) in C++. The SVM algorithm, a powerful supervised learning technique, is employed to classify handwritten digits from the famous MNIST dataset.
- Host: GitHub
- URL: https://github.com/aryehky/arduino
- Owner: aryehky
- Created: 2023-10-01T20:36:35.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-10-24T12:43:30.000Z (2 months ago)
- Last Synced: 2024-10-24T17:07:14.540Z (2 months ago)
- Topics: cpp, data-visualization, machine-learning, preprocessing
- Language: C++
- Homepage:
- Size: 86.9 KB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# C++ Machine Learning Project: Digit Recognition with Support Vector Machine (SVM)
## Overview
This project aims to implement a digit recognition system using Support Vector Machine (SVM) in C++. SVM is a powerful supervised learning algorithm used for classification tasks.## Features
- **Dataset:** Utilize the MNIST dataset for training and testing.
- **Preprocessing:** Implement preprocessing steps such as normalization and feature extraction.
- **SVM Implementation:** Develop SVM classifier using libraries like LIBSVM or implement from scratch.
- **Training:** Train the SVM model on the training dataset.
- **Testing:** Evaluate the model's accuracy on the test dataset.
- **Prediction:** Implement a function to predict digits based on input images.
- **Performance Metrics:** Calculate and display metrics like accuracy, precision, and recall.
- **User Interface (Optional):** Develop a simple CLI or GUI for interacting with the model.## Technology Stack
- **Language:** C++
- **Libraries:** LIBSVM (or similar for SVM implementation)
- **Dataset:** MNIST dataset (or similar digit recognition dataset)
- **Development Tools:** IDE like Visual Studio or Code::Blocks## Implementation Steps
1. **Dataset Preparation:** Download and preprocess the MNIST dataset.
2. **SVM Model Development:** Implement SVM classifier using chosen library or custom implementation.
3. **Training:** Train the SVM model on the training dataset.
4. **Testing and Evaluation:** Test the model on the test dataset and calculate performance metrics.
5. **Prediction Function:** Implement a function to predict digits based on user input.
6. **User Interface (Optional):** Develop a simple interface for easy interaction with the model.## Example Code Snippet (SVM Training)
```cpp
// Example using LIBSVM for SVM training#include
#include "svm.h"int main() {
// Load training data
svm_problem prob;
// Initialize prob with your training data (features and labels)// Set SVM parameters
svm_parameter param;
svm_set_default_parameter(¶m);
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.gamma = 0.5;// Train SVM model
svm_model *model = svm_train(&prob, ¶m);// Save model for future use
svm_save_model("svm_model.model", model);// Free memory
svm_free_and_destroy_model(&model);
svm_destroy_param(¶m);return 0;
}
.
.
.
.