Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/aryehky/arduino

🚀 C++ Machine Learning Project: Digit Recognition with Support Vector Machine (SVM) 🖥️ This project is a robust implementation of digit recognition using Support Vector Machine (SVM) in C++. The SVM algorithm, a powerful supervised learning technique, is employed to classify handwritten digits from the famous MNIST dataset.
https://github.com/aryehky/arduino

cpp data-visualization machine-learning preprocessing

Last synced: 28 days ago
JSON representation

🚀 C++ Machine Learning Project: Digit Recognition with Support Vector Machine (SVM) 🖥️ This project is a robust implementation of digit recognition using Support Vector Machine (SVM) in C++. The SVM algorithm, a powerful supervised learning technique, is employed to classify handwritten digits from the famous MNIST dataset.

Awesome Lists containing this project

README

        

# C++ Machine Learning Project: Digit Recognition with Support Vector Machine (SVM)

## Overview
This project aims to implement a digit recognition system using Support Vector Machine (SVM) in C++. SVM is a powerful supervised learning algorithm used for classification tasks.

## Features
- **Dataset:** Utilize the MNIST dataset for training and testing.
- **Preprocessing:** Implement preprocessing steps such as normalization and feature extraction.
- **SVM Implementation:** Develop SVM classifier using libraries like LIBSVM or implement from scratch.
- **Training:** Train the SVM model on the training dataset.
- **Testing:** Evaluate the model's accuracy on the test dataset.
- **Prediction:** Implement a function to predict digits based on input images.
- **Performance Metrics:** Calculate and display metrics like accuracy, precision, and recall.
- **User Interface (Optional):** Develop a simple CLI or GUI for interacting with the model.

## Technology Stack
- **Language:** C++
- **Libraries:** LIBSVM (or similar for SVM implementation)
- **Dataset:** MNIST dataset (or similar digit recognition dataset)
- **Development Tools:** IDE like Visual Studio or Code::Blocks

## Implementation Steps
1. **Dataset Preparation:** Download and preprocess the MNIST dataset.
2. **SVM Model Development:** Implement SVM classifier using chosen library or custom implementation.
3. **Training:** Train the SVM model on the training dataset.
4. **Testing and Evaluation:** Test the model on the test dataset and calculate performance metrics.
5. **Prediction Function:** Implement a function to predict digits based on user input.
6. **User Interface (Optional):** Develop a simple interface for easy interaction with the model.

## Example Code Snippet (SVM Training)
```cpp
// Example using LIBSVM for SVM training

#include
#include "svm.h"

int main() {
// Load training data
svm_problem prob;
// Initialize prob with your training data (features and labels)

// Set SVM parameters
svm_parameter param;
svm_set_default_parameter(&param);
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.gamma = 0.5;

// Train SVM model
svm_model *model = svm_train(&prob, &param);

// Save model for future use
svm_save_model("svm_model.model", model);

// Free memory
svm_free_and_destroy_model(&model);
svm_destroy_param(&param);

return 0;
}
.
.
.
.