Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/asafschers/scoruby

Ruby Scoring API for PMML
https://github.com/asafschers/scoruby

classification decision-tree gbm gradient-boosted-models gradient-boosting-classifier machine-learning naive-bayes pmml random-forest ruby ruby-gem rubyml

Last synced: 3 days ago
JSON representation

Ruby Scoring API for PMML

Awesome Lists containing this project

README

        


[![Coverage Status](https://coveralls.io/repos/github/asafschers/scoruby/badge.svg?branch=master)](https://coveralls.io/github/asafschers/scoruby?branch=master)
[![Gem Version](https://badge.fury.io/rb/scoruby.svg)](https://badge.fury.io/rb/scoruby)
[![Build Status](https://travis-ci.org/asafschers/scoruby.svg?branch=master)](https://travis-ci.org/asafschers/scoruby)

# Scoruby

Ruby scoring API for Predictive Model Markup Language (PMML).

Currently supports -

* Decision Tree
* Naive Bayes
* Logistic Regression
* Random Forest
* Gradient Boosted Trees

Will be happy to implement new models by demand, or assist with any other issue.

Contact me here or at [email protected].

[Tutorial - Deploy Machine Learning Models from R Research to Ruby Production with PMML](https://medium.com/@aschers/deploy-machine-learning-models-from-r-research-to-ruby-go-production-with-pmml-b41e79445d3d)

## Installation

Add this line to your application's Gemfile:

```ruby
gem 'scoruby'
```

And then execute:

$ bundle

Or install it yourself as:

$ gem install scoruby

## Usage

### Naive Bayes

```ruby
naive_bayes = Scoruby.load_model 'naive_bayes.pmml'
features = { f1: v1 , ... }
naive_bayes.lvalues(features)
naive_bayes.score(features, 'l1')
```

### Logistic Regression

```ruby
logistic_regression = Scoruby.load_model 'logistic_regression.pmml'
features = { f1: v1 , ... }
logistic_regression.score(features)
```

### Decision Tree

```ruby
decision_tree = Scoruby.load_model 'decision_tree.pmml'
features = { f1 : v1, ... }
decision_tree.decide(features)

=> #"0.999615579933873", "1"=>"0.000384420066126561"}>
```

### Random Forest

[Generate PMML - R](https://github.com/asafschers/scoruby/wiki/Random-Forest)

```ruby

random_forest = Scoruby.load_model 'titanic_rf.pmml'
features = {
Sex: 'male',
Parch: 0,
Age: 30,
Fare: 9.6875,
Pclass: 2,
SibSp: 0,
Embarked: 'Q'
}

random_forest.score(features)

=> {:label=>"0", :score=>0.882}

random_forest.decisions_count(features)

=> {"0"=>441, "1"=>59}

```

### Gradient Boosted model

[Generate PMML - R](https://github.com/asafschers/scoruby/wiki/Gradient-Boosted-Model)

```ruby

gbm = Scoruby.load_model 'gbm.pmml'

features = {
Sex: 'male',
Parch: 0,
Age: 30,
Fare: 9.6875,
Pclass: 2,
SibSp: 0,
Embarked: 'Q'
}

gbm.score(features)

=> 0.3652639329522468

```

## Development

After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake rspec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.

To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).

## Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/asafschers/scoruby. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](contributor-covenant.org) code of conduct.

## License

The gem is available as open source under the terms of the [MIT License](http://opensource.org/licenses/MIT).