Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/asafschers/scoruby
Ruby Scoring API for PMML
https://github.com/asafschers/scoruby
classification decision-tree gbm gradient-boosted-models gradient-boosting-classifier machine-learning naive-bayes pmml random-forest ruby ruby-gem rubyml
Last synced: 3 days ago
JSON representation
Ruby Scoring API for PMML
- Host: GitHub
- URL: https://github.com/asafschers/scoruby
- Owner: asafschers
- License: mit
- Created: 2016-11-12T16:54:47.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2022-10-19T04:55:03.000Z (about 2 years ago)
- Last Synced: 2024-05-22T13:15:51.524Z (7 months ago)
- Topics: classification, decision-tree, gbm, gradient-boosted-models, gradient-boosting-classifier, machine-learning, naive-bayes, pmml, random-forest, ruby, ruby-gem, rubyml
- Language: Ruby
- Homepage:
- Size: 2.39 MB
- Stars: 68
- Watchers: 3
- Forks: 12
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- machine-learning-with-ruby - scoruby - (Machine Learning Libraries / Frameworks)
README
[![Coverage Status](https://coveralls.io/repos/github/asafschers/scoruby/badge.svg?branch=master)](https://coveralls.io/github/asafschers/scoruby?branch=master)
[![Gem Version](https://badge.fury.io/rb/scoruby.svg)](https://badge.fury.io/rb/scoruby)
[![Build Status](https://travis-ci.org/asafschers/scoruby.svg?branch=master)](https://travis-ci.org/asafschers/scoruby)# Scoruby
Ruby scoring API for Predictive Model Markup Language (PMML).
Currently supports -
* Decision Tree
* Naive Bayes
* Logistic Regression
* Random Forest
* Gradient Boosted TreesWill be happy to implement new models by demand, or assist with any other issue.
Contact me here or at [email protected].
[Tutorial - Deploy Machine Learning Models from R Research to Ruby Production with PMML](https://medium.com/@aschers/deploy-machine-learning-models-from-r-research-to-ruby-go-production-with-pmml-b41e79445d3d)
## Installation
Add this line to your application's Gemfile:
```ruby
gem 'scoruby'
```And then execute:
$ bundle
Or install it yourself as:
$ gem install scoruby
## Usage
### Naive Bayes
```ruby
naive_bayes = Scoruby.load_model 'naive_bayes.pmml'
features = { f1: v1 , ... }
naive_bayes.lvalues(features)
naive_bayes.score(features, 'l1')
```### Logistic Regression
```ruby
logistic_regression = Scoruby.load_model 'logistic_regression.pmml'
features = { f1: v1 , ... }
logistic_regression.score(features)
```### Decision Tree
```ruby
decision_tree = Scoruby.load_model 'decision_tree.pmml'
features = { f1 : v1, ... }
decision_tree.decide(features)=> #"0.999615579933873", "1"=>"0.000384420066126561"}>
```### Random Forest
[Generate PMML - R](https://github.com/asafschers/scoruby/wiki/Random-Forest)
```ruby
random_forest = Scoruby.load_model 'titanic_rf.pmml'
features = {
Sex: 'male',
Parch: 0,
Age: 30,
Fare: 9.6875,
Pclass: 2,
SibSp: 0,
Embarked: 'Q'
}random_forest.score(features)
=> {:label=>"0", :score=>0.882}
random_forest.decisions_count(features)
=> {"0"=>441, "1"=>59}
```
### Gradient Boosted model
[Generate PMML - R](https://github.com/asafschers/scoruby/wiki/Gradient-Boosted-Model)
```ruby
gbm = Scoruby.load_model 'gbm.pmml'
features = {
Sex: 'male',
Parch: 0,
Age: 30,
Fare: 9.6875,
Pclass: 2,
SibSp: 0,
Embarked: 'Q'
}gbm.score(features)
=> 0.3652639329522468
```
## Development
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake rspec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
## Contributing
Bug reports and pull requests are welcome on GitHub at https://github.com/asafschers/scoruby. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](contributor-covenant.org) code of conduct.
## License
The gem is available as open source under the terms of the [MIT License](http://opensource.org/licenses/MIT).