Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ashishpatel26/datascienv

datascienv is package that helps you to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries
https://github.com/ashishpatel26/datascienv

catboost data-science data-science-env datascienv imbalanced-data lightgbm matplotlib numpy pandas pycaret scikit-learn seaborn tensorflow2 xgboost

Last synced: 2 months ago
JSON representation

datascienv is package that helps you to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries

Awesome Lists containing this project

README

        

# Data Science Environment Setup in single line

# [![PyPI version](https://badge.fury.io/py/datascienv.svg)](https://badge.fury.io/py/datascienv) [![GitHub version](https://badge.fury.io/gh/ashishpatel26%2Fdatascienv.svg)](https://badge.fury.io/gh/ashishpatel26%2Fdatascienv) [![PyPI license](https://img.shields.io/pypi/l/ansicolortags.svg)](https://pypi.python.org/pypi/ansicolortags/) [![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)

This package helps to setup your Data Science environment in single line.

Developed by Ashish Patel(c) 2020.

## datascienv

datascienv is a python package offering a single line Data Science Environment setup.

### Installation

---

#### Dependencies

`datascienv` is tested to work under Python 3.7+ and greater. The dependency requirements are based on the `datascienv` package update release:

- `pandas`(latest) - https://pandas.pydata.org/
- `numpy`(latest) - https://numpy.org/install/
- `scipy`(latest) - https://www.scipy.org/
- `scikit-learn`(latest) - https://scikit-learn.org/
- `joblib`(latest) - https://joblib.readthedocs.io/en/latest/
- `statmodels`(latest) - https://www.statsmodels.org/stable/index.html
- `matplotlib`(latest) - https://matplotlib.org/
- `seaborn`(latest) - https://seaborn.pydata.org/
- `xgboost`(latest) - https://xgboost.ai/sponsors
- `imbalanced-learn`(latest) - https://imbalanced-learn.org/
- `bokeh`(latest) - https://docs.bokeh.org/en/latest/
- `Boruta`(latest) - https://github.com/scikit-learn-contrib/boruta_py
- `jupyter`(latest) - https://jupyter.org/
- `spyder`(latest) - https://www.spyder-ide.org/
- `mlxtend`(latest) - http://rasbt.github.io/mlxtend/
- `lightgbm`(lightgbm) - https://lightgbm.readthedocs.io/en/latest/
- `catboost`(latest) - https://catboost.ai/
- `pycaret`(latest) - https://pycaret.org/
- `tensorflow(latest)` - https://www.tensorflow.org/tutorials
- `flask(latest)` - https://flask.palletsprojects.com/en/2.0.x/
- `fastapi(latest)` - https://fastapi.tiangolo.com/tutorial/
- `kats(latest)` - https://facebookresearch.github.io/Kats/
- `keras(latest)` - https://keras.io/examples/

#### Installation

* datascience is currently available on the PyPi's repository and you can install it via pip:

```bash
pip install -U datascienv
```

* If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:

```bash
git clone https://github.com/ashishpatel26/datascienv.git
cd datascienv
pip install .
```

* Or install using pip and GitHub:

```bash
pip install -U git+https://github.com/ashishpatel26/datascienv.git
```

* **Warnings:** If you find this type of warning then ignore that warning.

![](https://raw.githubusercontent.com/ashishpatel26/datascienv/main/img/warning.jpg)

---