https://github.com/ashishpatel26/star-collection-of-machine-learning
Original Author link : https://github.com/charlesliucn/stars-collection
https://github.com/ashishpatel26/star-collection-of-machine-learning
deep-learning deep-learning-tutorial deep-learning-tutorials dl-tutorial machine-learning machine-learning-algorithms machine-learning-tutorials machinelearning ml ml-tutorial tutorials
Last synced: 4 months ago
JSON representation
Original Author link : https://github.com/charlesliucn/stars-collection
- Host: GitHub
- URL: https://github.com/ashishpatel26/star-collection-of-machine-learning
- Owner: ashishpatel26
- License: mit
- Created: 2019-05-31T17:59:15.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-05-31T17:59:27.000Z (about 6 years ago)
- Last Synced: 2025-01-20T05:10:59.912Z (5 months ago)
- Topics: deep-learning, deep-learning-tutorial, deep-learning-tutorials, dl-tutorial, machine-learning, machine-learning-algorithms, machine-learning-tutorials, machinelearning, ml, ml-tutorial, tutorials
- Homepage:
- Size: 905 KB
- Stars: 2
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# My Starred Repositories [](./LICENSE)
This repository contains my starred repositories grouped into different categories.**Last Update:** Feb. 18th, 2019
**Author:** [@charlesliucn](https://github.com/charlesliucn)
**Newest Stars** see [here](https://nbviewer.jupyter.org/github/charlesliucn/stars-collection/blob/master/GitHub-Links.pdf).
**Keras Notes** see [here](https://github.com/charlesliucn/stars-collection/blob/master/keras_notes.md)* * *
## Table of Contents
### [1. Programming](#programming)
- [1.1 Tutorials & Cheatsheets](#tutorialscheatsheets)
- [1.2 Source Code for Books](#sourcecodeforbooks)
- [1.3 Coding Websites and contests](#codingcontest)### [2. Machine Learning & Deep Learning](#mldl)
- [2.1 Machine Learning](#ml)
- [2.2 Deep Learning](#dl)
- [2.3 Reinforcement Learning](#rl)
- [2.4 Toolkit or Library](#toolkit)
- [2.5 Generative Adversial Networks](#GAN)
- [2.6 NLP(Natural Language Processing)](#NLP)
- [2.7 Speech Recognition](#SR)
- [2.8 Data Mining](#DM)### [3. Data Science](#ds)
### [4. Github Pages](#gp)
### [5. Technology](#tech)
### [6. Job and Career](#job)
* * *
* * *## 1. Programming
### 1.1 Tutorials & Cheatsheets
+ [Awesome Cheatsheet](https://github.com/detailyang/awesome-cheatsheet)
+ [Awesome Data Science](https://github.com/bulutyazilim/awesome-datascience)
+ [Awesome Programming Books](https://github.com/jobbole/awesome-programming-books)
+ [Awesome Python](https://github.com/vinta/awesome-python)
+ [Awesome Python in Chinese](https://github.com/jobbole/awesome-python-cn)
+ [Data Structure and Algorithms in Python](https://github.com/keon/algorithms)
+ [Free Programming Books](https://github.com/justjavac/free-programming-books-zh_CN)
+ [Practical Programming Books](https://github.com/EZLippi/practical-programming-books)
+ [Python: Algorithms Implementation](https://github.com/prakhar1989/Algorithms)
+ [Python: Gensim NLP Toolkit](https://github.com/RaRe-Technologies/gensim)
+ [Python: Pandas Cookbook](https://github.com/jvns/pandas-cookbook)
+ [Python Programming: Games and Problems](https://github.com/norvig/pytudes)
+ [Python Programming](https://github.com/xxg1413/python)
+ [Ubuntu Cheatsheet](https://github.com/Aaronontheweb/ubuntu-cheatsheet)### 1.2 Source Code for Books
+ [Algorithms: 4th Edition](https://github.com/kevin-wayne/algs4)
+ [Algorithms (4th edition)](https://github.com/jimmysuncpt/Algorithms)
+ [Building Machine Learning Systems with Python](https://github.com/luispedro/BuildingMachineLearningSystemsWithPython)
+ [Introduction to Machine Learning with Python](https://github.com/amueller/introduction_to_ml_with_python)
+ [Machine Learning for Hackers](https://github.com/johnmyleswhite/ML_for_Hackers)
+ [Machine Learning With TensorFlow](https://github.com/BinRoot/TensorFlow-Book)
+ [Neural Networks and Deep Learning](https://github.com/mnielsen/neural-networks-and-deep-learning)
+ [Pattern Recognition and Machine Learning: Python](https://github.com/ctgk/PRML)
+ [The Elements of Statistical Learning: I](https://github.com/szcf-weiya/ESL-CN)
+ [The Elements of Statistical Learning: II](https://github.com/ajtulloch/Elements-of-Statistical-Learning)
+ [Reinforcement Learning: An Introduction](https://github.com/ShangtongZhang/reinforcement-learning-an-introduction)### 1.3 Contests for Programming
+ [Algorithm Solutions](https://github.com/intfloat/AlgoSolutions)
+ [Leetcode Solutions](https://github.com/kamyu104/LeetCode)* * *
## 2. Machine Learning & Deep Learning
### 2.1 Machine Learning
+ [Awesome Machine Learning](https://github.com/josephmisiti/awesome-machine-learning)
+ [Awesome Machine Learning in Chinese](https://github.com/jobbole/awesome-machine-learning-cn)
+ [Awesome Machine Learning on Source Code](https://github.com/src-d/awesome-machine-learning-on-source-code)
+ [Dive into Machine Learning](https://github.com/hangtwenty/dive-into-machine-learning)
+ [Machine Learning and Deep Learning Tutorials](https://github.com/ujjwalkarn/Machine-Learning-Tutorials)
+ [Machine Learning and Pattern Recognition Tutorials](https://github.com/rasbt/pattern_classification)
+ [Machine Learning Algorithms](https://github.com/rushter/MLAlgorithms)
+ [Machine Learning Basic](https://github.com/wepe/MachineLearning)
+ [Machine Learning Basic Algorithms](https://github.com/X-Brain/MachineLearning)
+ [Machine Learning Cheatsheet](https://github.com/soulmachine/machine-learning-cheat-sheet)
+ [Machine Learning CookBook](https://github.com/nfmcclure/tensorflow_cookbook)
+ [Machine Learning Experiments](https://github.com/jiqizhixin/ML-Tutorial-Experiment)
+ [Machine Learning for Software Engineers](https://github.com/ZuzooVn/machine-learning-for-software-engineers)
+ [Machine Learning Guide for Beginners](https://github.com/humphd/have-fun-with-machine-learning)
+ [Machine Learning in Action](https://github.com/apachecn/MachineLearning)
+ [Machine Learning Mindmap](https://github.com/dformoso/machine-learning-mindmap)
+ [Machine Learning Notes](https://github.com/roboticcam/machine-learning-notes)
+ [Machine Learning Tutorials: Python3](https://github.com/ethen8181/machine-learning)
+ [Machine Learning Tutorials: Morvan](https://github.com/MorvanZhou/tutorials)
+ [Machine Learning Udacity Course](https://github.com/udacity/machine-learning)
+ [Machine Learning With R](https://github.com/kaushikb258/Machine-Learning-With-R)
+ [Python Machine Learning Book](https://github.com/rasbt/python-machine-learning-book)
+ [State of the Art Results for Machine Learning Problems](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems)### 2.2 Deep Learning
+ [AI Cheatsheet](https://github.com/kailashahirwar/cheatsheets-ai)
+ [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning)
+ [Awesome Deep Learning Papers](https://github.com/terryum/awesome-deep-learning-papers)
+ [Deep Learning Book (Chinese)](https://github.com/exacity/deeplearningbook-chinese)
+ [Deep Learning for Java](https://github.com/deeplearning4j/deeplearning4j)
+ [Deep Learning Javascript](https://github.com/karpathy/convnetjs)
+ [Deep Learning Keras and Tensorflow](https://github.com/leriomaggio/deep-learning-keras-tensorflow)
+ [Deep Learning Papers](https://github.com/sbrugman/deep-learning-papers)
+ [Deep Learning Papers Reading Roadmap](https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap)
+ [Deep Learning Papers and Notes](https://github.com/dennybritz/deeplearning-papernotes)
+ [Deep Learning Project I](https://github.com/Spandan-Madan/DeepLearningProject)
+ [Deep Learning Project II](https://github.com/priya-dwivedi/Deep-Learning)
+ [Deep Learning Tutorials](https://github.com/lisa-lab/DeepLearningTutorials)
+ [Deep Learning With Python Notebooks](https://github.com/fchollet/deep-learning-with-python-notebooks)
+ [Deep Learning With 21 examples](https://github.com/hzy46/Deep-Learning-21-Examples)
+ [Fast.ai Courses](https://github.com/fastai/courses)
+ [Fundamentals of Machine Learning and Deep Learning](https://github.com/ageron/handson-ml)
+ [Neural Networks for Beginners](https://github.com/AILabUSiena/NeuralNetworksForBeginners)
+ [Simplified Deep Learning](https://github.com/exacity/simplified-deeplearning)
+ [Solutions to deeplearning.ai](https://github.com/Yukong/Deeplearning.ai-Solutions)
+ [Qix: Machine Learning, Deep Learning](https://github.com/ty4z2008/Qix)
+ [Udacity: Deep-Learning Course](https://github.com/thushv89/udacity_deeplearning_complete)### 2.3. Reinforcement Learning
+ [Awesome Reinforcement Learning](https://github.com/aikorea/awesome-rl)
+ [Reinforcement Learning I](https://github.com/dennybritz/reinforcement-learning)
+ [Reinforcement Learning II](https://github.com/rlcode/reinforcement-learning)### 2.4 Toolkit or Library
+ [Apache Hadoop](https://github.com/apache/hadoop)
+ [Apache Spark](https://github.com/apache/spark)
+ [Caffe](https://github.com/BVLC/caffe)
+ [Caffe2](https://github.com/caffe2/caffe2)
+ [CNTK](https://github.com/Microsoft/CNTK)
+ [Deep Learning for Windows 10](https://github.com/philferriere/dlwin)
+ [GPU Training](https://github.com/NVIDIA/DIGITS)
+ [Keras](https://github.com/fchollet/keras)
+ [MXNet/Gluon](https://github.com/mli/gluon-tutorials-zh)
+ [PyTorch](https://github.com/pytorch/pytorch)
- [Awesome PyTorch List](https://github.com/bharathgs/Awesome-pytorch-list)
- [PyTorch Examples](https://github.com/pytorch/examples)
- [PyTorch Tutorials](https://github.com/hunkim/PyTorchZeroToAll)
- [PyTorch Tutorials](https://github.com/yunjey/pytorch-tutorial)
+ [Scikit-Learn](https://github.com/scikit-learn/scikit-learn)
+ [Tensorflow](https://github.com/tensorflow/tensorflow)
- [Tensorboard](https://github.com/tensorflow/tensorboard)
- [TensorFlow Examples](https://github.com/aymericdamien/TensorFlow-Examples)
- [Tensorflow Experiments](https://github.com/jtoy/awesome-tensorflow)
- [Tensorflow in Chinese](https://github.com/jikexueyuanwiki/tensorflow-zh)
- [Tensorflow models](https://github.com/tensorflow/models)
- [Tensorflow Practices](https://github.com/vahidk/EffectiveTensorflow)
- [Tensorflow Tutorials: Morvan](https://github.com/MorvanZhou/Tensorflow-Tutorial)
- [TensorFlow Tutorials: Nlintz](https://github.com/nlintz/TensorFlow-Tutorials)
- [Tensorflow Tutorials: Pkmital](https://github.com/pkmital/tensorflow_tutorials)
- [Tensorflow Tutorials: Stanford](https://github.com/chiphuyen/stanford-tensorflow-tutorials)
- [Tensorflow With Latest Paper](https://github.com/NickShahML/tensorflow_with_latest_papers)
- [Tensorflow Workshops](https://github.com/tensorflow/workshops)
- [tflearn](https://github.com/tflearn/tflearn)
+ [Theano](https://github.com/Theano/Theano)
+ [TuriCreate](https://github.com/apple/turicreate)### 2.5 Generative Adversial Networks
+ [Bayes GAN](https://github.com/andrewgordonwilson/bayesgan)
+ [Collection of GANs](https://github.com/hindupuravinash/the-gan-zoo)
+ [Introduction to GAN](https://github.com/AYLIEN/gan-intro)
+ [Improved WGANs: Pytorch](https://github.com/caogang/wgan-gp)
+ [Imporved WGANs: Tensorflow](https://github.com/igul222/improved_wgan_training)
+ [GAN models](https://github.com/wiseodd/generative-models)
+ [Generative Adversial Networks](https://github.com/YadiraF/GAN)
+ [Leak GAN](https://github.com/CR-Gjx/LeakGAN)
+ [Text GAN I](https://github.com/ankitkv/TextGAN)
+ [Text GAN II](https://github.com/AustinStoneProjects/TextGAN)
+ [RNN + GAN](https://github.com/amirbar/rnn.wgan)
+ [Wasserstein GANs](https://github.com/keon/text-wgan)### 2.6 NLP(Natural Language Processing)
+ [Awesome NLP](https://github.com/keon/awesome-nlp)
+ [Awesome Chinese NLP](https://github.com/crownpku/Awesome-Chinese-NLP)
+ [Chinese natural language processing: Fudan University](https://github.com/FudanNLP/fnlp)
+ [CMU NN4NLP](https://github.com/neubig/nn4nlp2017-code)
+ [NLP Tutorial](https://github.com/neubig/nlptutorial)
+ [NLP Shell Tutorial](https://github.com/HIT-SCIR/scir-training-day)
+ [Deep Learning for NLP Resources](https://github.com/andrewt3000/DL4NLP)
+ [Oxford NLP Lectures](https://github.com/oxford-cs-deepnlp-2017/lectures)
+ [Python and Cython for NLP](https://github.com/explosion/spaCy)
+ [Speech and Natural Language Processing](https://github.com/edobashira/speech-language-processing)
+ **Language Modelling**
- [1 Billion Word Benchmark](https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark)
- [char-RNN](https://github.com/karpathy/char-rnn)
- [Exploring the limits of language modeling](https://github.com/rafaljozefowicz/lm)
- [F-LSTM G-LSTM Language Modeling](https://github.com/okuchaiev/f-lm)
- [Gated CNN](https://github.com/anantzoid/Language-Modeling-GatedCNN)
- [LSTM: subword units](https://github.com/claravania/subword-lstm-lm/branches)
- [LSTM cell Test by language modeling](https://github.com/asahi417/LSTMCell)
- [Recurrent Highway Networks](https://github.com/julian121266/RecurrentHighwayNetworks)
- [RNN: word-level](https://github.com/hunkim/word-rnn-tensorflow)
- [RNN: character-level](https://github.com/sherjilozair/char-rnn-tensorflow)
- [State of the art Language model](https://github.com/okuchaiev/f-lm)
+ **Text Generation**
- [RNN Text Generation](https://github.com/spiglerg/RNN_Text_Generation_Tensorflow)
- [Word Level Text Generation: RNN](https://github.com/rdcolema/word-level-rnn-for-text-generation)
- [Word Level Text Generation using Keras](https://github.com/vlraik/word-level-rnn-keras)
+ **Toolkit**
- [XenC: Data Selection for Language Processing](https://github.com/antho-rousseau/XenC)
+ **Word Clustering**
- [Brown Clustering](https://github.com/mheilman/tan-clustering)
+ **Text Processing**
- [Text Classifier](https://github.com/richliao/textClassifier)
- [Compute Distance Between Sequences](https://github.com/orsinium/textdistance)
+ **Word Embedding/Word2Vec**
- [Fast Text](https://github.com/facebookresearch/fastText)
- [Four word2vec methods in Python](https://github.com/deborausujono/word2vecpy)
- [GloVe Algorithm I: Tensorflow](https://github.com/GradySimon/tensorflow-glove)
- [GloVe Algorithm II: Simple Python](https://github.com/maciejkula/glove-python)
- [GloVe Algorithm III: Stanford Version](https://github.com/stanfordnlp/GloVe)
- [Google word2vec](https://github.com/klb3713/word2vec)
- [Intrinsic Evaluation](https://github.com/ytsvetko/qvec)
- [ Multilingual Unsupervised or Supervised word Embeddings](https://github.com/facebookresearch/MUSE)
- [Skip-Gram and CBOW I](https://github.com/dav/word2vec)
- [Skip-Gram and CBOW II](https://github.com/deborausujono/word2vecpy)
- [Skip-Gram and Negative Sampling](https://github.com/tscheepers/word2vec)
- [Skip-Gram Algorithm: Pytorch](https://github.com/fanglanting/skip-gram-pytorch)
- [Word Clustering: mkcls](https://github.com/clab/mkcls)### 2.7 Speech Recognition
+ [Baidu Deep Speech](https://github.com/mozilla/DeepSpeech)
+ [Baidu Deep Speech 2](https://github.com/SeanNaren/deepspeech.pytorch)
+ [End-to-end Automatic Speech Recognition](https://github.com/zzw922cn/Automatic_Speech_Recognition)
+ [Framework for Detection Evaluation](https://github.com/usnistgov/F4DE)
+ [Kaldi IO for Python](https://github.com/vesis84/kaldi-io-for-python)
+ [Kaldi Toolkit](https://github.com/kaldi-asr/kaldi)
+ [Spoken Language Identification](https://github.com/YerevaNN/Spoken-language-identification)
+ [Tensorflow for Speech Recognition](https://github.com/pannous/tensorflow-speech-recognition)
+ [Voice Web: Speech Data Collection](https://github.com/mozilla/voice-web)
+ [Wavenet: End-to-end ASR](https://github.com/buriburisuri/speech-to-text-wavenet)### 2.8 Data Mining
+ [Web Data Mining](https://github.com/clips/pattern)* * *
## 3. Data Science
+ [Business Analytics](https://github.com/ethen8181/Business-Analytics)
+ [Data Analysis and Machine Learning](https://github.com/rhiever/Data-Analysis-and-Machine-Learning-Projects)
+ [Data Science Blogs](https://github.com/thedataincubator/data-science-blogs)
+ [Data Science Ipython Notebooks](https://github.com/donnemartin/data-science-ipython-notebooks)
+ [Data Science With Python](https://github.com/ujjwalkarn/DataSciencePython)
+ [FullStack Data Engineer](https://github.com/Honlan/fullstack-data-engineer)
+ [Python Data Science Handbook](https://github.com/jakevdp/PythonDataScienceHandbook)
+ **Competition**
- [Awesome Public DataSet](https://github.com/awesomedata/awesome-public-datasets)
- [Tianchi Competition](https://github.com/Jessicamidi/IJCAI17_Tianchi_Rank4)
- [Zhihu Competition](https://github.com/chenyuntc/PyTorchText)
- [Kaggle](https://github.com/apachecn/kaggle)
- [ML/DL Competition List](https://github.com/PPshrimpGo/CompetitionList)* * *
## 4. Github Pages
+ [Emoji Cheatsheet](https://github.com/WebpageFX/emoji-cheat-sheet.com)
+ [GitHub Profile Summary](https://github.com/tipsy/github-profile-summary)
+ [Icons for Github Pages or Github Markdown](https://github.com/edent/SuperTinyIcons)
+ [Hexo Themes](https://github.com/hexojs/hexo)
- [Academic Pages](https://github.com/academicpages/academicpages.github.io)
- [cnfeat.com](https://github.com/cnfeat/cnfeat.github.io)
- [Rvlasveld](https://github.com/rvlasveld/rvlasveld.github.io)
+ [Icons for Github Pages or Github Markdown](https://github.com/edent/SuperTinyIcons)* * *
+ [Alibaba Technology: Hangzhou Yunqi](https://github.com/Alibaba-Technology/hangzhouYunQi2017ppt)
+ [Awesome Github Wechat App](https://github.com/opendigg/awesome-github-wechat-weapp)
+ [Awesome Technology](https://github.com/ngEdmundas/awesome-technology/wiki)
+ [Awesome Wechat App](https://github.com/justjavac/awesome-wechat-weapp)
+ [Music Programming Language](https://github.com/alda-lang/alda)
+ [NIPS 2017 Resources](https://github.com/hindupuravinash/nips2017)
+ [Papers on Computer Science](https://github.com/papers-we-love/papers-we-love)
+ **Interesting Applications**
- [shadowsocks windows](https://github.com/shadowsocks/shadowsocks-windows)
- [qrcode generator](https://github.com/sylnsfar/qrcode)* * *
## 6. Job and Career
+ [Awesome Interview Questions](https://github.com/MaximAbramchuck/awesome-interview-questions)
+ [Best Resume Ever](https://github.com/salomonelli/best-resume-ever)
+ [Coding Interview](https://github.com/Wang-Jun-Chao/coding-interviews)
+ [Coding Interview University](https://github.com/jwasham/coding-interview-university)
+ [Every Programmer should know](https://github.com/mr-mig/every-programmer-should-know)
+ [Latex Templates Collection](https://github.com/cmichi/latex-template-collection)
+ [Technical Interview](https://github.com/andreis/interview)
+ [Technical Interview Handbook](https://github.com/yangshun/tech-interview-handbook)
+ [Technical Interview Notebook](https://github.com/CyC2018/Interview-Notebook)
+ [The Art of Programming: Interview and Algorithms](https://github.com/julycoding/The-Art-Of-Programming-By-July)
+ **Courses**
- [Coursera](https://github.com/intfloat/coursera)
- [Self-Taught Computer Science](https://github.com/ossu/computer-science)
- [Deep Learning Cousera](https://github.com/Kulbear/deep-learning-coursera)