Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ashrw/handwritten_digit_recognizer
A handwritten digit recognition system using Python and Scikit-learn to preprocess images and classify digits with a trained SVM model.
https://github.com/ashrw/handwritten_digit_recognizer
ml python scikit-learn
Last synced: about 2 months ago
JSON representation
A handwritten digit recognition system using Python and Scikit-learn to preprocess images and classify digits with a trained SVM model.
- Host: GitHub
- URL: https://github.com/ashrw/handwritten_digit_recognizer
- Owner: AshRW
- Created: 2024-09-14T15:15:35.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-09-14T19:19:06.000Z (4 months ago)
- Last Synced: 2024-11-21T16:14:48.652Z (about 2 months ago)
- Topics: ml, python, scikit-learn
- Language: Python
- Homepage:
- Size: 28.3 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Handwritten Digit Recognition
This project implements a handwritten digit recognition system using Python and Scikit-learn. The system processes custom images of handwritten digits, trains a Support Vector Machine (SVM) model on the Scikit-learn `digits` dataset, and predicts the digits from new images.
## Features
- **Image Preprocessing**: Resize and normalize custom images to 8x8 pixels.
- **Model Training**: Train an SVM classifier using Scikit-learn's `digits` dataset.
- **Prediction**: Classify digits from preprocessed images using the trained model.## Demo Video
https://github.com/user-attachments/assets/76f3ef5f-d52d-4615-98ae-4867ea490571
## Installation
1. **Clone the Repository**:
```bash
git clone https://github.com/your-username/handwritten-digit-recognition.git
cd handwritten-digit-recognition
```2. **Set Up the Virtual Environment**:
```bash
python -m venv env
```3. **Activate the Virtual Environment**:
- **Windows**:
```bash
.\env\Scripts\activate
```
- **macOS/Linux**:
```bash
source env/bin/activate
```4. **Install Dependencies**:
```bash
pip install -r requirements.txt
```## Usage
1. **Train the Model**:
```bash
python train_model.py
```2. **Predict Digits**:
```bash
python predict.py --image path_to_your_image.png
```## Project Structure
- `train_svm.py`: Script to train and save the SVM model.
- `load_model.py`: Script to load the model and predict digits from custom images.
- `preprocessing.py`: Contains functions to preprocess images for the model.## Dependencies
- OpenCV
- Numpy
- Scikit-learn## License
This project is licensed under the MIT License.
## Acknowledgements
- Scikit-learn for the `digits` dataset and machine learning tools.
- OpenCV for image preprocessing.## Contact
For questions or suggestions, please open an issue or contact me.