https://github.com/astrazeneca/awesome-shapley-value
Reading list for "The Shapley Value in Machine Learning" (JCAI 2022)
https://github.com/astrazeneca/awesome-shapley-value
List: awesome-shapley-value
artificial-intelligence data-science deep-learning explainability explainable explainable-ai explainable-artificial-intelligence explainable-ml lime machine-learning owen-value shap shapley shapley-additive-explanations shapley-decomposition shapley-q-value shapley-value xai
Last synced: about 2 months ago
JSON representation
Reading list for "The Shapley Value in Machine Learning" (JCAI 2022)
- Host: GitHub
- URL: https://github.com/astrazeneca/awesome-shapley-value
- Owner: AstraZeneca
- License: apache-2.0
- Created: 2022-04-29T13:50:41.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2022-08-08T08:53:10.000Z (over 3 years ago)
- Last Synced: 2024-05-22T15:05:31.472Z (over 1 year ago)
- Topics: artificial-intelligence, data-science, deep-learning, explainability, explainable, explainable-ai, explainable-artificial-intelligence, explainable-ml, lime, machine-learning, owen-value, shap, shapley, shapley-additive-explanations, shapley-decomposition, shapley-q-value, shapley-value, xai
- Homepage:
- Size: 622 KB
- Stars: 134
- Watchers: 2
- Forks: 10
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Awesome Shapley Value
[](https://github.com/sindresorhus/awesome)
[](http://makeapullrequest.com)

## The Survey Paper
This repository accompanies our survey paper [The Shapley Value in Machine Learning](https://arxiv.org/abs/2202.05594).
If you find the survey or this repository useful in your research, please consider citing our paper:
```bibtex
@inproceedings{shapleysurvey,
title = {The Shapley Value in Machine Learning},
author = {Rozemberczki, Benedek and Watson, Lauren and Bayer, Péter and Yang, Hao-Tsung and Kiss, Olivér and Nilsson, Sebastian and Sarkar, Rik},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
pages = {5572--5579},
year = {2022},
}
```
--------------------------------------------------------------------------------
## Contents
1. [Game Theory Fundamentals](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/fundamentals.md)
2. [Approximations](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/approximations.md)
3. [Feature Selection](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/feature_selection.md)
4. [Explainability](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/explainability.md)
5. [Data Valuation](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/data_valuation.md)
6. [Ensemble Selection](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/ensemble_selection.md)
7. [Federated Learning](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/federated_learning.md)
8. [Reinforcement Learning](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/multi_agent_reinforcement_learning.md)
9. [Miscellaneous](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/miscellaneous.md)
--------------------------------------------------------------------------------
**License**
- [Apache 2.0](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/LICENSE)