Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ata-turhan/optimized-cnn-ta
It is a Jupyter notebook that compares different trading strategies using technical analysis, machine learning, and deep learning methods.
https://github.com/ata-turhan/optimized-cnn-ta
algorithmic-trading deep-neural-networks financial-engineering financial-machine-learning technical-analysis
Last synced: 9 days ago
JSON representation
It is a Jupyter notebook that compares different trading strategies using technical analysis, machine learning, and deep learning methods.
- Host: GitHub
- URL: https://github.com/ata-turhan/optimized-cnn-ta
- Owner: ata-turhan
- License: gpl-3.0
- Created: 2023-01-22T13:58:10.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-05-25T17:28:59.000Z (over 1 year ago)
- Last Synced: 2024-04-09T01:04:20.430Z (9 months ago)
- Topics: algorithmic-trading, deep-neural-networks, financial-engineering, financial-machine-learning, technical-analysis
- Language: Jupyter Notebook
- Homepage: https://www.sciencedirect.com/science/article/pii/S1568494618302151
- Size: 103 MB
- Stars: 3
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
------------------------------------------------------------------------
[![Sourcery](https://img.shields.io/badge/Sourcery-enabled-brightgreen)](https://sourcery.ai)
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
[![Style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)------------------------------------------------------------------------
# Optimized-CNN-TA
It is a Jupyter notebook that compares different trading strategies using technical analysis, machine learning, and deep learning methods.
You can read the article at: https://drive.google.com/file/d/1s4Az5HqdqpjbkPw00iGHiUh8bYuAJOHp/view?usp=share_link