Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/atao/ban-geocoder

🗺️ Geocoding addresses with BAN ! - Using adresse.data.gouv.fr API or Offline
https://github.com/atao/ban-geocoder

address api ban ban-api geo geocoder geocoding offline opendata python

Last synced: about 2 months ago
JSON representation

🗺️ Geocoding addresses with BAN ! - Using adresse.data.gouv.fr API or Offline

Awesome Lists containing this project

README

        

[![Pylint](https://github.com/atao/BAN-Geocoder/actions/workflows/pylint.yml/badge.svg)](https://github.com/atao/BAN-Geocoder/actions/workflows/pylint.yml)
# BAN Geocoder
🗺️ Geocoding addresses with BAN !

## Features
- Geocoding online using the [Base Adresse Nationale API](https://adresse.data.gouv.fr/)
- Geocoding offline using a local BAN database created with [CSV from BAN](https://adresse.data.gouv.fr/data/ban/adresses/latest/csv).

## Purpose
The [Base Adresse Nationale (BAN)](https://adresse.data.gouv.fr/) is the reference address database in France, containing the correspondence between non-nominative addresses (number, street name, lieu-dit and commune) and the geographical position of over 25 million addresses in France.

## Requirements
```
pip install -r requirements.txt
```

## Usage and options
```
Usage: ban_geocoder.py [OPTIONS] COMMAND [ARGS]...

🗺️ Geocoding addresses with BAN !

Options:
--help Show this message and exit.

Commands:
file Geocoding addresses from file.
geo Geocoding a single address.
initdb Creating local database with BAN datasheet to geocoding offline.
local Local geocoding using BAN database.
```
- *Command file*
```
Usage: ban_geocoder.py file [OPTIONS]

Geocoding addresses from file.

Options:
-i, --input-file PATH Addresses file to geocode [required]
-l, --limit INTEGER Number of results for each geocoding.
[default: 0]
-csv, --output-csv PATH Path to CSV file where results will be
saved.
-hdr, --include-header Include header row in the CSV output.
-idx, --include-index Include DataFrame index in the CSV / SQL
output.
-db, --output-db PATH Path to SQLite database file where results
will be saved.
-t, --table-name TEXT Name of the table to insert data into in the
SQLite database. [default: data]
-m, --mode [fail|replace|append]
How to behave if the file already exists.
[default: append]
-v, --verbose More information displayed.
--help Show this message and exit.
```
- *Command geo*
```
Usage: ban_geocoder.py geo [OPTIONS]

Geocoding a single address.

Options:
-a, --address TEXT Address to geocode [required]
-l, --limit INTEGER Number of results for each geocoding.
[default: 0]
-csv, --output-csv PATH Path to CSV file where results will be
saved.
-hdr, --include-header Include header row in the CSV output.
-idx, --include-index Include DataFrame index in the CSV / SQL
output.
-db, --output-db PATH Path to SQLite database file where results
will be saved.
-t, --table-name TEXT Name of the table to insert data into in the
SQLite database. [default: data]
-m, --mode [fail|replace|append]
How to behave if the file already exists.
[default: append]
-v, --verbose More information displayed.
--help Show this message and exit.
```
- *Command initdb*
```
Options:
-csv, --ban-datasheet TEXT Department number related of BAN (Base Adresse
Nationale) CSV datasheet. [default: france]
-db, --ban-db PATH File path to the SQLite database. [default:
ban.db]
-sep, --separator TEXT CSV field separator. [default: ;]
-chk, --chunksize INTEGER Number of rows per chunk to process. [default:
10000]
-v, --verbose More information displayed.
--help Show this message and exit.
```
- *Command local*
```
Usage: ban_geocoder.py local [OPTIONS]

Local geocoding using BAN database.

Options:
-i, --input-file PATH Addresses file to geocode [required]
-ban, --local-database TEXT Local BAN database for geocoding.
[required]
-p, --processes INTEGER Adjust the number of processes based on your
machine for calculations. [default: 12]
-csv, --output-csv PATH Path to CSV file where results will be
saved.
-hdr, --include-header Include header row in the CSV output.
-idx, --include-index Include DataFrame index in the CSV / SQL
output.
-db, --output-db PATH Path to SQLite database file where results
will be saved.
-t, --table-name TEXT Name of the table to insert data into in the
SQLite database. [default: data]
-m, --mode [fail|replace|append]
How to behave if the file already exists.
[default: append]
-v, --verbose More information displayed.
--help Show this message and exit.

```

## Examples
*with csv export*
```
(.venv) ME > python .\ban_geocoder.py geo -a "55 rue Faubourg Saint-Honoré" -v -csv address
[+] Geocoding address : 55 rue Faubourg Saint-Honoré
-------------------------------------------------------------
geometry_coordinates properties_label
[48.87063, 2.316931] 55 Rue du Faubourg Saint-Honoré 75008 Paris
-------------------------------------------------------------
[+] Data exported successfully to "address.csv".
```
*with database export*
```
(.venv) ME > python .\ban_geocoder.py geo -a "55 rue Faubourg Saint-Honoré" -v -d address
[+] Geocoding address : 55 rue Faubourg Saint-Honoré
-------------------------------------------------------------
geometry_coordinates properties_label
[48.87063, 2.316931] 55 Rue du Faubourg Saint-Honoré 75008 Paris
-------------------------------------------------------------
[+] Data exported successfully to table "data" in database "address.db".
```
*create a local BAN database with addresses from department 31*
```
(.venv) ME > python .\ban_geocoder.py initdb --ban-datasheet 31 --ban-db ban.db -v
[+] Downloading BAN datasheet from https://adresse.data.gouv.fr/data/ban/adresses/latest/csv/adresses-31.csv.gz
[+] File downloaded successfully: adresses-31.csv.gz
[+] Uncompressing adresses-31.csv.gz to adresses-31.csv
[+] Importing adresses-31.csv into SQLite database ban.db...
[+] Database ban.db with table addresses_france created succesfully !
[+] Optimize database...
[+] Indexes in ban.db was created succesfully !
```
*using using local BAN database*
```
(.venv) ME > python .\ban_geocoder.py local -i .\data.txt --local-database .\ban.db -p 20 -v
[+] Geocoding addresses...
[+] Fetching addresses from .\ban.db...
[+] Best match for "16 boulevard THIERS 21000 DIJON" ---> 16 Boulevard Thiers 21000 Dijon [47.323686, 5.049228] with a score of 100
[+] Best match for "1 rue DE VELARS 21320 POUILLY EN AUXOIS" ---> 1 Rue de Velard 21320 Pouilly-en-Auxois [47.265765, 4.554323] with a score of 97
[+] Best match for "Rue Claude Petiet 21400 CHATILLON SUR SEINE" ---> 2 Rue Claude Petiet 21400 Châtillon-sur-Seine [47.861858, 4.559604] with a score of 97
[+] Best match for "21 rue de la Mare 21380 SAVIGNY LE SEC" ---> 21 Rue de la Mare 21380 Savigny-le-Sec [47.431938, 5.050335] with a score of 100
```

## See also
* [BanR](https://github.com/joelgombin/banR) : R client for the BAN API
* [tidygeocoder](https://github.com/jessecambon/tidygeocoder), r package similar to banR using other geocoding services such as US Census geocoder, Nominatim (OSM), Geocodio, and Location IQ.