Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/atlas-2192/multi-ai-chat-app


https://github.com/atlas-2192/multi-ai-chat-app

agent ai assistant chatbot llama mutli-modal openai python

Last synced: 10 days ago
JSON representation

Awesome Lists containing this project

README

        

VT.ai


Minimal multimodal AI chat app with dynamic conversation routing

## Overview

VT.ai is a VT.ai - Minimal multimodal AI chat app that provides a seamless chat interface for interacting with various Large Language Models (LLMs). It supports both cloud-based providers and local model execution through [Ollama](https://github.com/ollama/ollama).

### Key Features 🚀

- **Multi-modal Interactions**
- Text and image processing capabilities
- Real-time streaming responses
- [Beta] Advanced Assistant features via OpenAI's Assistant API

- **Flexible Model Support**
- OpenAI, Anthropic, and Google integration
- Local model execution via Ollama
- Dynamic parameter adjustment (temperature, top-p)

- **Modern Architecture**
- Built on Chainlit for responsive UI
- SemanticRouter for intelligent conversation routing
- Real-time response streaming
- Customizable model settings

## Screenshots

![Multi LLM Providers](./src/resources/screenshot/1.jpg)
![Multi-modal Conversation](./src/resources/screenshot/2.jpg)

## Quick Start Guide

### Prerequisites

- Python 3.7+
- (Recommended) `rye` for dependency management
- For local models:
- [Ollama](https://ollama.com/download) client
- Desired [Ollama models](https://ollama.com/library)

### Installation

1. Clone the repository
2. Copy `.env.example` to `.env` and configure your API keys
3. Set up Python environment:
```bash
python3 -m venv .venv
source .venv/bin/activate
pip3 install -r requirements.txt
```
4. Optional: Train semantic router
```bash
python3 src/router/trainer.py
```
5. Launch the application:
```bash
chainlit run src/app.py -w
```

### Using Local Models with Ollama

```bash
# Download model
ollama pull llama3

# Start Ollama server
ollama serve
```

## Technical Stack

- **[Chainlit](https://github.com/Chainlit/chainlit)**: Frontend framework
- **[LiteLLM](https://github.com/BerriAI/litellm)**: LLM integration layer
- **[SemanticRouter](https://github.com/aurelio-labs/semantic-router)**: Conversation routing

## Contributing

1. Fork the repository
2. Create a feature branch: `git checkout -b feature/amazing-feature`
3. Commit changes: `git commit -m 'Add amazing feature'`
4. Push to branch: `git push origin feature/amazing-feature`
5. Open a Pull Request

## License

This project is licensed under the MIT License. See [LICENSE](LICENSE) for details.

## Connect

-Email: [email protected]