An open API service indexing awesome lists of open source software.

https://github.com/attarmau/styleclip

A mockup full stack app built with React, FastAPI, MongoDB, and Docker, powered by AWS Rekognition & CLIP for multi-tagging and clothing recommendations
https://github.com/attarmau/styleclip

clip fastapi mcp recommender-system

Last synced: 4 months ago
JSON representation

A mockup full stack app built with React, FastAPI, MongoDB, and Docker, powered by AWS Rekognition & CLIP for multi-tagging and clothing recommendations

Awesome Lists containing this project

README

          

# FastMCP_RecSys
This is a CLIP-Based Fashion Recommender with MCP.

### πŸ“Œ Sample Components for UI
1. Image upload
2. Submit button
3. Display clothing tags + recommendations

# Mockup
A user uploads a clothing image β†’ YOLO detects clothing β†’ CLIP encodes β†’ Recommend similar

Screenshot 2025-04-26 at 10 26 13β€―AM

# Folder Structure
```
/project-root
β”‚
β”œβ”€β”€ /backend
β”‚ β”œβ”€β”€ Dockerfile
β”‚ β”œβ”€β”€ /app
β”‚ β”œβ”€β”€ /aws
β”‚ β”‚ β”‚ └── rekognition_wrapper.py # AWS Rekognition logic
β”‚ β”‚ β”œβ”€β”€ /utils
β”‚ β”‚ β”‚ └── image_utils.py # Bounding box crop utils
β”‚ β”‚ β”œβ”€β”€ /controllers
β”‚ β”‚ β”‚ └── clothing_detector.py # Coordinates Rekognition + cropping
β”‚ β”‚ β”œβ”€β”€ /tests
β”‚ β”‚ β”‚ β”œβ”€β”€ test_rekognition_wrapper.py
β”‚ β”‚ β”‚ └── test_clothing_tagging.py
β”‚ β”‚ β”œβ”€β”€ server.py # FastAPI app code
β”‚ β”‚ β”œβ”€β”€ /routes
β”‚ β”‚ β”‚ └── clothing_routes.py
β”‚ β”‚ β”œβ”€β”€ /controllers
β”‚ β”‚ β”‚ β”œβ”€β”€ clothing_controller.py
β”‚ β”‚ β”‚ β”œβ”€β”€ clothing_tagging.py
β”‚ β”‚ β”‚ └── tag_extractor.py # Pending: define core CLIP functionality
β”‚ β”‚ β”œβ”€β”€ schemas/
β”‚ β”‚ β”‚ └── clothing_schemas.py
β”‚ β”‚ β”œβ”€β”€ config/
β”‚ β”‚ β”‚ β”œβ”€β”€ tag_list_en.py $ Tool for mapping: https://jsoncrack.com/editor
β”‚ β”‚ β”‚ β”œβ”€β”€ database.py
β”‚ β”‚ β”‚ β”œβ”€β”€ settings.py
β”‚ β”‚ β”‚ └── api_keys.py
β”‚ β”‚ └── requirements.txt
β”‚ └── .env
β”‚
β”œβ”€β”€ /frontend
β”‚ β”œβ”€β”€ Dockerfile
β”‚ β”œβ”€β”€ package.json
β”‚ β”œβ”€β”€ package-lock.json
β”‚ β”œβ”€β”€ /public
β”‚ β”‚ └── index.html
β”‚ β”œβ”€β”€ /src
β”‚ β”‚ β”œβ”€β”€ /components
β”‚ β”‚ β”‚ β”œβ”€β”€ ImageUpload.jsx
β”‚ β”‚ β”‚ β”œβ”€β”€ DetectedTags.jsx
β”‚ β”‚ β”‚ └── Recommendations.jsx
β”‚ β”‚ β”œβ”€β”€ /utils
β”‚ β”‚ β”‚ └── api.js
β”‚ β”‚ β”œβ”€β”€ App.js # Main React component
β”‚ β”‚ β”œβ”€β”€ index.js
β”‚ β”‚ β”œβ”€β”€ index.css
β”‚ β”‚ β”œβ”€β”€ tailwind.config.js
β”‚ β”‚ └── postcss.config.js
β”‚ └── .env
β”œβ”€β”€ docker-compose.yml
└── README.md
```

## Quick Start Guide
### Step 1: Clone the GitHub Project
### Step 2: Set Up the Python Environment
```
python -m venv venv
source venv/bin/activate # On macOS or Linux
venv\Scripts\activate # On Windows
```
### Step 3: Install Dependencies
```
pip install -r requirements.txt
```
### Step 4: Start the FastAPI Server (Backend)
```
uvicorn backend.app.server:app --reload
```
Once the server is running and the database is connected, you should see the following message in the console:
```
Database connected
INFO: Application startup complete.
```
Screenshot 2025-04-25 at 1 15 45β€―AM

### Step 5: Install Dependencies
Database connected
INFO: Application startup complete.
```
npm install
```
### Step 6: Start the Development Server (Frontend)
```
npm start
```
Once running, the server logs a confirmation and opens the app in your browser: [http://localhost:3000/](http://localhost:3000/)

Screenshot 2025-04-25 at 9 08 50β€―PM

# What’s completed so far:
1. FastAPI server is up and running (24 Apr)
2. Database connection is set up (24 Apr)
3. Backend architecture is functional (24 Apr)
4. Basic front-end UI for uploading picture (25 Apr)
## 5. Mock Testing for AWS Rekognition -> bounding box (15 May)
```
PYTHONPATH=. pytest backend/app/tests/test_rekognition_wrapper.py
```
Screenshot 2025-05-20 at 4 58 14β€―PM

- Tested Rekognition integration logic independently using a mock β†’ verified it correctly extracts bounding boxes only when labels match the garment set
- Confirmed the folder structure and PYTHONPATH=. works smoothly with pytest from root

## 6. Mock Testing for AWS Rekognition -> CLIP (20 May)
```
PYTHONPATH=. pytest backend/app/tests/test_clothing_tagging.py
```
Screenshot 2025-05-21 at 9 25 33β€―AM

- Detecting garments using AWS Rekognition

- Cropping the image around detected bounding boxes

- Tagging the cropped image using CLIP

## 7. Mock Testing for full image tagging pipeline (Image bytes β†’ AWS Rekognition (detect garments) β†’ Crop images β†’ CLIP (predict tags) + Error Handling (25 May)
| **Negative Test Case** | **Description** |
| -------------------------------| ------------------------------------------------------------------------------- |
| No Detection Result | AWS doesn't detect any garments β€” should return an empty list. |
| Image Not Clothing | CLIP returns vague or empty tags β€” verify fallback behavior. |
| AWS Returns Exception | Simulate `rekognition.detect_labels` throwing an error β€” check `try-except`. |
| Corrupted Image File | Simulate a broken (non-JPEG) image β€” verify it raises an error or gives a hint. |

```
PYTHONPATH=. pytest backend/app/tests/test_clothing_tagging.py
```
Screenshot 2025-05-21 at 11 19 47β€―AM

- detect_garments: simulates AWS Rekognition returning one bounding box: {"Left": 0.1, "Top": 0.1, "Width": 0.5, "Height": 0.5}
- crop_by_bounding_box: simulates the cropping step returning a dummy "cropped_image" object
- get_tags_from_clip: simulates CLIP returning a list of tags: ["T-shirt", "Cotton", "Casual"]

## 8. Run Testing for CLIP Output (30 May)
```
python3 -m venv venv
pip install -r requirements.txt
pip install git+https://github.com/openai/CLIP.git
python -m backend.app.tests.test_tag_extractor
```
Screenshot 2025-06-06 at 5 12 13β€―PM

Next Step:
1. Evaluate CLIP’s tagging accuracy on sample clothing images
2. Fine-tune the tagging system for better recommendations
3. Test the backend integration with real-time user data
4. Set up monitoring for model performance
5. Front-end demo