https://github.com/atticuszeller/pytorch-lightning-uv
๐ฆ Zero-config Deep Learning template with PyTorch Lightning, UV package manager, W&B tracking, and modern Python tooling ๐
https://github.com/atticuszeller/pytorch-lightning-uv
classification cuda deep-learning machine-learning mnist-classification python pytorch pytorch-lightning typer uv
Last synced: 7 months ago
JSON representation
๐ฆ Zero-config Deep Learning template with PyTorch Lightning, UV package manager, W&B tracking, and modern Python tooling ๐
- Host: GitHub
- URL: https://github.com/atticuszeller/pytorch-lightning-uv
- Owner: AtticusZeller
- License: mit
- Created: 2025-01-22T11:14:00.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2025-03-03T17:03:54.000Z (7 months ago)
- Last Synced: 2025-03-03T18:22:42.183Z (7 months ago)
- Topics: classification, cuda, deep-learning, machine-learning, mnist-classification, python, pytorch, pytorch-lightning, typer, uv
- Language: Python
- Homepage:
- Size: 4.6 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# ๐งช Pytorch Lightning UV Template
A modern Deep Learning experiment template with PyTorch Lightning
[](https://www.python.org/downloads/release/python-310/)
[](https://pytorch.org/get-started/locally/)
[](https://lightning.ai/)
[](https://github.com/astral-sh/ruff)
[](https://github.com/ashleve/lightning-hydra-template#license)
[](https://github.com/AtticusZeller/Pytorch-Lightning-uv/pulls)Click on [Use this template](https://github.com/AtticusZeller/Pytorch-Lightning-uv/generate) to initialize new repository.
## โจ Features
* ๐ **UV Environment Management** - Fast and efficient dependency management
* ๐ฏ **Typer CLI** - Modern command line interface
* โ๏ธ **YAML Config** - Flexible experiment configuration
* ๐ **Lightning Components**
+ DataModule for clean data handling
+ Model with built-in training logic
+ Trainer with all the bells and whistles
* ๐ **Weights & Biases Integration**
+ Experiment tracking and visualization
+ Hyperparameter optimization with sweeps
+ Dataset analysis and exploration
* ๐จ **Clean Project Structure**
+ Modular and maintainable codebase
+ Easy to extend and customize## ๐ ๏ธ Installation
```bash
uv sync --dev
```## ๐ Dataset Analysis
Explore and analyze your dataset with built-in EDA tools:
```bash
python -m expt.main -c config/resnet.yml --eda
```๐ View EDA Example

## ๐ Training
Start training your model with a single command:
```bash
python -m expt.main -c config/resnet.yml --train
```๐ View Training Details
### Configuration Overview

### Training Progress

### Training Summary

### W&B Dashboard

## ๐ Evaluation
Evaluate your trained model:
```bash
python -m expt.main -c config/resnet.yml --eval --run-id n8fjnlyi
```๐ View Evaluation Results

## ๐๏ธ Hyperparameter Tuning
Optimize your model with W&B Sweeps:
```bash
python -m expt.main -c config/resnet.yml --sweep --sweep-config config/sweep/mlp.yml
```๐ View Sweep Results

## ๐ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## ๐ Acknowledgements
* [PyTorch Lightning](https://lightning.ai/)
* [Weights & Biases](https://wandb.ai/)
* [Typer](https://typer.tiangolo.com/)
* [UV](https://github.com/astral-sh/uv)---
Made with โค๏ธ for the ML community