An open API service indexing awesome lists of open source software.

https://github.com/austinrochford/webmc3

A web interface for exploring PyMC3 traces
https://github.com/austinrochford/webmc3

bayesian-inference dash mcmc probabilistic-programming python statistical-analysis visualization

Last synced: 9 months ago
JSON representation

A web interface for exploring PyMC3 traces

Awesome Lists containing this project

README

          

# webmc3
A web interface for exploring [PyMC3](https://github.com/pymc-devs/pymc3) traces, inspired by [ShinyStan](https://github.com/stan-dev/shinystan) and built with [Dash](https://github.com/plotly/dash).

![webmc3 demo](https://media.giphy.com/media/3oFzmg4wfP0aiqNcLm/giphy.gif)

Consult the [quickstart notebook](/docs/notebooks/Quickstart.ipynb) to start using `webmc3`.

## Development

The simplest way to develop `webmc3` is to use the [Dockerfile](/Dockerfile).

First, pull the image from [Docker Hub](https://hub.docker.com/r/austinrochford/webmc3/) with

```bash
docker pull austinrochford/webmc3
```

or build the image with

```bash
docker build -t webmc3 .
```

Next launch a container using the image.

```bash
docker run -d \
-p $JUPYTER_PORT:8888 \
-p $DASH_PORT:8050 \
-v `pwd`:/home/jovyan/webmc3 \
--name webmc3 webmc3 \
start-notebook.sh --NotebookApp.token=''
```

There will not be a Jupyter notebook server available at `http://localhost:$JUPYTER_PORT/tree` and, once running, the `webmc3` app will be available at `http://localhost:$DASH_PORT`. Most importantly, your fork of `webmc3` is on the `PYTHONPATH` in the container.