Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/autodistill/autodistill-clip
CLIP module for use with Autodistill.
https://github.com/autodistill/autodistill-clip
autodistill clip image-classification
Last synced: 2 months ago
JSON representation
CLIP module for use with Autodistill.
- Host: GitHub
- URL: https://github.com/autodistill/autodistill-clip
- Owner: autodistill
- License: mit
- Created: 2023-06-06T08:05:28.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-05T09:14:03.000Z (about 1 year ago)
- Last Synced: 2024-08-10T23:17:49.803Z (5 months ago)
- Topics: autodistill, clip, image-classification
- Language: Python
- Homepage: https://docs.autodistill.com
- Size: 14.6 KB
- Stars: 7
- Watchers: 4
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# Autodistill CLIP Module
This repository contains the code supporting the CLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[CLIP](https://github.com/openai/CLIP), developed by OpenAI, is a computer vision model trained using pairs of images and text. You can use CLIP with autodistill for image classification.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [CLIP Autodistill documentation](https://autodistill.github.io/autodistill/base_models/clip/).
## Installation
To use CLIP with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-clip
```## Quickstart
```python
from autodistill_clip import CLIP
from autodistill.detection import CaptionOntology# define an ontology to map class names to our CLIP prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = CLIP(
ontology=CaptionOntology(
{
"person": "person",
"a forklift": "forklift"
}
)
)results = base_model.predict("./context_images/test.jpg")
print(results)
base_model.label("./context_images", extension=".jpeg")
```## License
The code in this repository is licensed under an [MIT license](LICENSE.md).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!