Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/autodistill/autodistill-efficient-yolo-world

EfficientSAM + YOLO World base model for use with Autodistill.
https://github.com/autodistill/autodistill-efficient-yolo-world

efficientsam yolo-world zero-shot-object-detection zero-shot-segmentation

Last synced: about 2 months ago
JSON representation

EfficientSAM + YOLO World base model for use with Autodistill.

Awesome Lists containing this project

README

        







# Autodistill EfficientYOLOWorld Module

This repository contains the code supporting the EfficientYOLOWorld base model for use with [Autodistill](https://github.com/autodistill/autodistill).

EfficientYOLOWorld is a combination of two models:

1. YOLO-World, a zero-shot object detection model, and;
2. EfficientSAM, an image segmentation model.

This model runs EfficientSAM on each bounding box region generated by YOLO-World. This allows you to retrieve both the bounding box and the segmentation mask for each object of interest in an image.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [EfficientYOLOWorld Autodistill documentation](https://autodistill.github.io/autodistill/base_models/efficient_yolo_world/).

## Installation

To use EfficientYOLOWorld with autodistill, you need to install the following dependency:

```bash
pip3 install autodistill-efficient-yolo-world
```

## Quickstart

```python
from autodistill_efficient_yolo_world import EfficientYOLOWorld
from autodistill.detection import CaptionOntology
import cv2
import supervision as sv

# define an ontology to map class names to our EfficientYOLOWorld prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = EfficientYOLOWorld(ontology=CaptionOntology({"book": "book"}))

# predict on an image
result = base_model.predict("bookshelf.jpeg", confidence=0.1)

image = cv2.imread("bookshelf.jpeg")

mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(
scene=image.copy(),
detections=result,
)

sv.plot_image(annotated_frame)

base_model.label("./context_images", extension=".jpeg")
```

## License

EfficientSAM is licensed under an [Apache 2.0 license](EFFICIENT_SAM_LICENSE).

YOLO-World is licensed under a [GPL-3.0 license](YOLO_WORLD_LICENSE).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!