Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/autodistill/autodistill-efficientsam
EfficientSAM base model for use with Autodistill.
https://github.com/autodistill/autodistill-efficientsam
autodistill efficientsam image-segmentation
Last synced: about 2 months ago
JSON representation
EfficientSAM base model for use with Autodistill.
- Host: GitHub
- URL: https://github.com/autodistill/autodistill-efficientsam
- Owner: autodistill
- License: apache-2.0
- Created: 2023-12-06T07:18:39.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-02-16T18:37:09.000Z (11 months ago)
- Last Synced: 2024-02-17T19:42:33.677Z (10 months ago)
- Topics: autodistill, efficientsam, image-segmentation
- Language: Python
- Homepage: https://docs.autodistill.com
- Size: 12.7 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Autodistill EfficientSAM Module
This repository contains the code supporting the EfficientSAM base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[EfficientSAM](https://github.com/yformer/EfficientSAM) is an image segmentation model that was introduced in the paper "[EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything](https://yformer.github.io/efficient-sam/)". You can use EfficientSAM with autodistill for image segmentation.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
## Installation
To use EfficientSAM with Autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-efficientsam
```## Quickstart
This model returns segmentation masks for all objects in an image.
If you want segmentation masks only for specific objects matching a text prompt, we recommend combining EfficientSAM with a zero-shot detection model like GroundingDINO.
Read our ComposedDetectionModel documentation for more information about how to combine models like EfficientSAM and GroundingDINO.
```python
from autodistill_efficientsam import EfficientSAM# define an ontology to map class names to our EfficientSAM prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = EfficientSAM(None)masks = base_model.predict("./image.png")
```## License
This project is licensed under an [Apache 2.0 license](LICENSE).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!