An open API service indexing awesome lists of open source software.

https://github.com/autodistill/autodistill-fastvit

FastViT base model for use with Autodistill.
https://github.com/autodistill/autodistill-fastvit

autodistill computer-vision fastvit image-classification zero-shot-classification

Last synced: 3 months ago
JSON representation

FastViT base model for use with Autodistill.

Awesome Lists containing this project

README

        







# Autodistill FastViT Module

This repository contains the code supporting the FastViT base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[FastViT](https://github.com/apple/ml-fastvit), developed by Apple, is a classification model that supports zero-shot classification.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [FastViT Autodistill documentation](https://autodistill.github.io/autodistill/base_models/fastvit/).

## Installation

To use FastViT with autodistill, you need to install the following dependency:

```bash
pip3 install autodistill-fastvit
```

## Quickstart

FastViT works using the ImageNet-1k class list. This class list is available in the `FASTVIT_IMAGENET_1K_CLASSES` variable.

You can provide classes from the list to retrieve predictions for a specific class in the list. You can also provide a custom ontology to map classes from the list to your own classes.

```python
from autodistill_fastvit import FastViT, FASTVIT_IMAGENET_1K_CLASSES
from autodistill.detection import CaptionOntology

# zero shot with no prompts
base_model = FastViT(None)

# zero shot with prompts from FASTVIT_IMAGENET_1K_CLASSES
base_model = FastViT(
ontology=CaptionOntology(
{
"coffeemaker": "coffeemaker",
"ice cream": "ice cream"
}
)
)

predictions = base_model.predict("./example.png")

labels = [FASTVIT_IMAGENET_1K_CLASSES[i] for i in predictions.class_id.tolist()]

print(labels)
```

## License

See [LICENSE](LICENSE) for the model license.

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!