Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/autodistill/autodistill-fuyu
Fuyu multi-modal language model for use with Autodistill.
https://github.com/autodistill/autodistill-fuyu
autodistill computer-vision fuyu multimodal
Last synced: about 1 month ago
JSON representation
Fuyu multi-modal language model for use with Autodistill.
- Host: GitHub
- URL: https://github.com/autodistill/autodistill-fuyu
- Owner: autodistill
- Created: 2023-10-18T21:00:26.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-10-19T09:54:11.000Z (about 1 year ago)
- Last Synced: 2023-10-19T11:43:46.249Z (about 1 year ago)
- Topics: autodistill, computer-vision, fuyu, multimodal
- Language: Python
- Homepage: https://docs.autodistill.com
- Size: 4.88 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Autodistill Fuyu Module
This repository contains the code supporting the Fuyu base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[Fuyu-8B](https://www.adept.ai/blog/fuyu-8b), developed by [Adept](https://www.adept.ai/), is a multimodal language model. You can ask Fuyu a question about an image and retrieve a response. The Autodistill Fuyu integration enables you to use Fuyu for image classification.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [Fuyu Autodistill documentation](https://autodistill.github.io/autodistill/base_models/fuyu/).
## Installation
To use Fuyu with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-fuyu
```## Quickstart
```python
from autodistill_fuyu import Fuyu# define an ontology to map class names to our Fuyu prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = CLIP(
ontology=CaptionOntology(
{
"person": "person",
"a forklift": "forklift"
}
)
)
predictions = model.predict("image.png")base_model.label("./context_images", extension=".jpeg")
```##
Fuyu is licensed under a [CC-BY-NC license](https://www.adept.ai/blog/fuyu-8b).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!