Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/autodistill/autodistill-llava
LLaVA base model for use with Autodistill.
https://github.com/autodistill/autodistill-llava
autodistill computer-vision llava multimodal-llm
Last synced: about 1 month ago
JSON representation
LLaVA base model for use with Autodistill.
- Host: GitHub
- URL: https://github.com/autodistill/autodistill-llava
- Owner: autodistill
- License: apache-2.0
- Created: 2023-10-14T07:36:29.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-01-24T09:20:57.000Z (11 months ago)
- Last Synced: 2024-01-24T11:26:58.058Z (11 months ago)
- Topics: autodistill, computer-vision, llava, multimodal-llm
- Language: Python
- Homepage: https://docs.autodistill.com
- Size: 17.6 KB
- Stars: 3
- Watchers: 3
- Forks: 1
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Autodistill LLaVA Module
This repository contains the code supporting the LLaVA base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[LLaVA](https://github.com/haotian-liu/LLaVA) is a multi-modal language model with object detection capabilities. You can use LLaVA with autodistill for object detection. [Learn more about LLaVA 1.5](https://blog.roboflow.com/first-impressions-with-llava-1-5/), the most recent version of LLaVA at the time of releasing this package.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [LLaVA Autodistill documentation](https://autodistill.github.io/autodistill/base_models/llava/).
## Installation
To use LLaVA with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-llava
```## Quickstart
```python
from autodistill_llava import LLaVA# define an ontology to map class names to our LLaVA prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = LLaVA(
ontology=CaptionOntology(
{
"a forklift": "forklift"
}
)
)
base_model.label("./context_images", extension=".jpeg")
```## License
This model is licensed under an [Apache 2.0 License](LICENSE).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!