Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/autodistill/autodistill-mobileclip

MobileCLIP base model for use with Autodistill.
https://github.com/autodistill/autodistill-mobileclip

Last synced: 5 days ago
JSON representation

MobileCLIP base model for use with Autodistill.

Awesome Lists containing this project

README

        







# Autodistill MobileCLIP Module

This repository contains the code supporting the MobileCLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[MobileCLIP](https://github.com/openai/MobileCLIP), developed by OpenAI, is a computer vision model trained using pairs of images and text. You can use MobileCLIP with autodistill for image classification.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [MobileCLIP Autodistill documentation](https://autodistill.github.io/autodistill/base_models/mobileclip/).

## Installation

To use MobileCLIP with autodistill, you need to install the following dependency:

```bash
pip3 install autodistill-mobileclip
```

## Quickstart

```python
from autodistill_mobileclip import MobileCLIP
from autodistill.detection import CaptionOntology

# define an ontology to map class names to our MobileCLIP prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = MobileCLIP(
ontology=CaptionOntology(
{
"person": "person",
"a forklift": "forklift"
}
)
)
base_model.label("./context_images", extension=".jpeg")
```

## License

[add license information here]

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!