An open API service indexing awesome lists of open source software.

https://github.com/autodistill/autodistill-owlv2

OWLv2 base model for use with Autodistill.
https://github.com/autodistill/autodistill-owlv2

autodistill computer-vision object-detection owlv2 zero-shot-object-detection

Last synced: 2 months ago
JSON representation

OWLv2 base model for use with Autodistill.

Awesome Lists containing this project

README

        







# Autodistill OWLv2 Module

This repository contains the code supporting the OWLv2 base model for use with [Autodistill](https://github.com/autodistill/autodistill).

OWLv2 is a zero-shot object detection model that follows from on the OWL-ViT architecture. OWLv2 has an open vocabulary, which means you can provide arbitrary text prompts for the model. You can use OWLv2 with autodistill for object detection.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [OWLv2 Autodistill documentation](https://autodistill.github.io/autodistill/base_models/owlv2/).

## Installation

To use OWLv2 with autodistill, you need to install the following dependency:

```bash
pip3 install autodistill-owlv2
```

## Quickstart

```python
from autodistill_owlv2 import OWLv2
from autodistill.detection import CaptionOntology
from autodistill.utils import plot
import cv2

# define an ontology to map class names to our OWLv2 prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = OWLv2(
ontology=CaptionOntology(
{
"person": "person",
"dog": "dog"
}
)
)

# run inference on a single image
results = base_model.predict("dog.jpeg")

plot(
image=cv2.imread("dog.jpeg"),
classes=base_model.ontology.classes(),
detections=results
)

# label a folder of images
base_model.label("./context_images", extension=".jpeg")
```

## License

This model is licensed under an [Apache 2.0](LICENSE) ([see original model implementation license](https://huggingface.co/docs/transformers/main/en/model_doc/owlv2), and the corresponding [HuggingFace Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/owlv2)).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!