Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/autodistill/autodistill-qwen-vl
Qwen-VL base model for use with Autodistill.
https://github.com/autodistill/autodistill-qwen-vl
autodistill qwen-vl zero-shot-object-detection
Last synced: 18 days ago
JSON representation
Qwen-VL base model for use with Autodistill.
- Host: GitHub
- URL: https://github.com/autodistill/autodistill-qwen-vl
- Owner: autodistill
- License: other
- Created: 2024-02-08T08:04:00.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-02-08T09:31:46.000Z (11 months ago)
- Last Synced: 2024-11-08T04:15:17.996Z (2 months ago)
- Topics: autodistill, qwen-vl, zero-shot-object-detection
- Language: Python
- Homepage: https://docs.autodistill.com
- Size: 6.84 KB
- Stars: 0
- Watchers: 4
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Autodistill Qwen-VL Module
This repository contains the code supporting the Qwen-VL base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[Qwen-VL](https://qwenlm.github.io/blog/qwen-vl/), introduced in the paper [Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond](https://arxiv.org/abs/2308.12966), is a multimodal vision model. Qwen-VL has visual grounding capabilities, which allows you to use the model for zero-shot object detection.
You can use Autodistill Qwen-VL to auto-label images for use in training a smaller, fine-tuned vision model.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [Qwen-VL Autodistill documentation](https://autodistill.github.io/autodistill/base_models/qwen-vl/).
## Installation
To use Qwen-VL with Autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-qwen-vl
```## Quickstart
```python
from autodistill_qwen_vl import QwenVL
from autodistill.utils import plot
from autodistill.detection import CaptionOntology# define an ontology to map class names to our QwenVL prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = QwenVL(
ontology=CaptionOntology(
{
"person": "person",
"a forklift": "forklift"
}
)
)
results = base_model.predict("logistics.jpeg")plot(
image=cv2.imread("logistics.jpeg"),
classes=base_model.ontology.classes(),
detections=results
)# label all images in a folder called `context_images`
base_model.label("./context_images", extension=".jpeg")
```## License
[add license information here]
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!