Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/autodistill/autodistill-siglip
SigLIP base model for use with Autodistill.
https://github.com/autodistill/autodistill-siglip
Last synced: 5 days ago
JSON representation
SigLIP base model for use with Autodistill.
- Host: GitHub
- URL: https://github.com/autodistill/autodistill-siglip
- Owner: autodistill
- Created: 2024-02-16T21:54:12.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-03-05T10:38:02.000Z (8 months ago)
- Last Synced: 2024-09-17T15:53:42.613Z (about 2 months ago)
- Language: Python
- Size: 9.77 KB
- Stars: 7
- Watchers: 4
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Autodistill SigLIP Module
This repository contains the code supporting the SigLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[CLIP](https://github.com/openai/CLIP), developed by OpenAI, is a computer vision model trained using pairs of images and text. You can use CLIP with autodistill for image classification.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [SigLIP Autodistill documentation](https://autodistill.github.io/autodistill/base_models/siglip/).
## Installation
To use SigLIP with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-siglip
```## Quickstart
```python
from autodistill_siglip import SigLIP
from autodistill.detection import CaptionOntology# define an ontology to map class names to our SigLIP prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
labels = ["person", "a forklift"]
base_model = SigLIP(
ontology=CaptionOntology({item: item for item in labels})
)results = base_model.predict("image.jpeg", confidence=0.1)
top_1 = results.get_top_k(1)
# show top label
print(labels[top_1[0][0]])# label folder of images
base_model.label("./context_images", extension=".jpeg")
```## License
The SigLIP model is licensed under an [Apache 2.0 license](https://huggingface.co/google/siglip-base-patch16-224).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!