An open API service indexing awesome lists of open source software.

https://github.com/autodistill/autodistill-vlpart

VLPart model for use with Autodistill.
https://github.com/autodistill/autodistill-vlpart

autodistill computer-vision object-detection vlpart

Last synced: about 2 months ago
JSON representation

VLPart model for use with Autodistill.

Awesome Lists containing this project

README

        







# Autodistill VLPart Module

This repository contains the code supporting the VLPart base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[VLPart](https://github.com/facebookresearch/VLPart), developed by Meta Research, is an object detection and segmentation model that works with an open vocabulary. `autodistill-vlpart` enables you to use VLPart to auto-label images for use in training a fine-tuned model. `autodistill-vlpart` supports the LVIS vocabulary.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [VLPart Autodistill documentation](https://autodistill.github.io/autodistill/base_models/vlpart/).

## Installation

To use VLPart with autodistill, you need to install the following dependency:

```bash
pip3 install autodistill-vlpart
```

## Quickstart

```python
from autodistill_vlpart import VLPart
from autodistill.detection import CaptionOntology
from autodistill.utils import plot

# define an ontology to map class names to our VLPart prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = VLPart(
ontology=CaptionOntology(
{
"person": "person"
}
)
)

predictions = base_model.predict("./image.png")

print(predictions)

plot(
image=cv2.imread("./image.png"),
classes=base_model.class_names,
detections=predictions
)

# label the images in the context_images folder
base_model.label("./context_images", extension=".jpeg")
```

## License

This project is licensed under an [MIT license](LICENSE).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!