Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/automl/auto-sklearn
Automated Machine Learning with scikit-learn
https://github.com/automl/auto-sklearn
automated-machine-learning automl bayesian-optimization hyperparameter-optimization hyperparameter-search hyperparameter-tuning meta-learning metalearning scikit-learn smac
Last synced: 5 days ago
JSON representation
Automated Machine Learning with scikit-learn
- Host: GitHub
- URL: https://github.com/automl/auto-sklearn
- Owner: automl
- License: bsd-3-clause
- Created: 2015-07-02T15:38:10.000Z (over 9 years ago)
- Default Branch: development
- Last Pushed: 2024-11-29T14:40:31.000Z (about 1 month ago)
- Last Synced: 2025-01-04T21:16:37.180Z (7 days ago)
- Topics: automated-machine-learning, automl, bayesian-optimization, hyperparameter-optimization, hyperparameter-search, hyperparameter-tuning, meta-learning, metalearning, scikit-learn, smac
- Language: Python
- Homepage: https://automl.github.io/auto-sklearn
- Size: 121 MB
- Stars: 7,674
- Watchers: 214
- Forks: 1,288
- Open Issues: 202
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE.txt
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-automated-machine-learning - [code
- awesome-meteo - auto-sklearn - learn (Uncategorized / Uncategorized)
- awesome-llmops - auto-sklearn - in replacement for a scikit-learn estimator. | ![GitHub Badge](https://img.shields.io/github/stars/automl/auto-sklearn.svg?style=flat-square) | (AutoML / Profiling)
- awesome-python-machine-learning - auto-sklearn - auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. (Uncategorized / Uncategorized)
- awesome-sciml - automl/auto-sklearn: Automated Machine Learning with scikit-learn
- AwesomeResponsibleAI - Auto-Sklearn
- awesome-list - auto-sklearn - An automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. (Machine Learning Framework / General Purpose Framework)
- awesome-mlops - AutoSKLearn - Automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. (AutoML)
- awesome-production-machine-learning - auto-sklearn - sklearn.svg?style=social) - Framework to automate algorithm and hyperparameter tuning for sklearn. (AutoML)
- StarryDivineSky - automl/auto-sklearn - learn 进行自动化机器学习 (其他_机器学习与深度学习)
- awesome-ai-ml-dl - Auto sklearn
- awesome-python-machine-learning-resources - GitHub - 12% open · ⏱️ 22.08.2022): (超参数优化和AutoML)
README
# auto-sklearn
**auto-sklearn** is an automated machine learning toolkit and a drop-in replacement for a [scikit-learn](https://scikit-learn.org) estimator.
Find the documentation **[here](https://automl.github.io/auto-sklearn/)**. Quick links:
* [Installation Guide](https://automl.github.io/auto-sklearn/master/installation.html)
* [Releases](https://automl.github.io/auto-sklearn/master/releases.html)
* [Manual](https://automl.github.io/auto-sklearn/master/manual.html)
* [Examples](https://automl.github.io/auto-sklearn/master/examples/index.html)
* [API](https://automl.github.io/auto-sklearn/master/api.html)## auto-sklearn in one image
![image](doc/images/askl_pipeline.png)
## auto-sklearn in four lines of code
```python
import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)
```## Relevant publications
If you use auto-sklearn in scientific publications, we would appreciate citations.
**Efficient and Robust Automated Machine Learning**
*Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter*
Advances in Neural Information Processing Systems 28 (2015)[Link](https://papers.neurips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf) to publication.
```
@inproceedings{feurer-neurips15a,
title = {Efficient and Robust Automated Machine Learning},
author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and Springenberg, Jost and Blum, Manuel and Hutter, Frank},
booktitle = {Advances in Neural Information Processing Systems 28 (2015)},
pages = {2962--2970},
year = {2015}
}
```----------------------------------------
**Auto-Sklearn 2.0: The Next Generation**
*Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter**
arXiv:2007.04074 [cs.LG], 2020[Link](https://arxiv.org/abs/2007.04074) to publication.
```
@article{feurer-arxiv20a,
title = {Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning},
author = {Feurer, Matthias and Eggensperger, Katharina and Falkner, Stefan and Lindauer, Marius and Hutter, Frank},
booktitle = {arXiv:2007.04074 [cs.LG]},
year = {2020}
}
```----------------------------------------
Also, have a look at the blog on [automl.org](https://automl.org) where we regularly release blogposts.