Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/av/harbor
Effortlessly run LLM backends, APIs, frontends, and services with one command.
https://github.com/av/harbor
ai bash cli container docker docker-compose exl2 gguf llm local npm package pypi safetensors self-hosted tool tools
Last synced: 3 days ago
JSON representation
Effortlessly run LLM backends, APIs, frontends, and services with one command.
- Host: GitHub
- URL: https://github.com/av/harbor
- Owner: av
- License: apache-2.0
- Created: 2024-07-27T18:46:59.000Z (6 months ago)
- Default Branch: main
- Last Pushed: 2024-12-29T18:37:08.000Z (16 days ago)
- Last Synced: 2025-01-04T15:01:45.529Z (10 days ago)
- Topics: ai, bash, cli, container, docker, docker-compose, exl2, gguf, llm, local, npm, package, pypi, safetensors, self-hosted, tool, tools
- Language: TypeScript
- Homepage: https://github.com/av/harbor
- Size: 6.46 MB
- Stars: 825
- Watchers: 8
- Forks: 55
- Open Issues: 27
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-ai-tools - Harbor - run LLM backends, APIs, frontends, and services with one command (Other / Music)
- trackawesomelist - Harbor (⭐458) - run LLM backends, APIs, frontends, and services with one command (Recently Updated / [Oct 28, 2024](/content/2024/10/28/README.md))
- awesome_ai_agents - Harbor - Effortlessly run LLM backends, APIs, frontends, and services with one command. (Building / Tools)
- awesome_ai_agents - Harbor - Effortlessly run LLM backends, APIs, frontends, and services with one command. (Building / Tools)
README
![Harbor project logo](https://github.com/av/harbor/raw/main/docs/harbor-2.png)
[![GitHub Tag](https://img.shields.io/github/v/tag/av/harbor)](https://github.com/av/harbor/releases)
[![NPM Version](https://img.shields.io/npm/v/%40avcodes%2Fharbor?labelColor=red&color=white)](https://www.npmjs.com/package/@avcodes/harbor)
[![PyPI - Version](https://img.shields.io/pypi/v/llm-harbor?labelColor=blue)](https://pypi.org/project/llm-harbor/)
![GitHub repo size](https://img.shields.io/github/repo-size/av/harbor)
![GitHub repo file or directory count](https://img.shields.io/github/directory-file-count/av/harbor?type=file&extension=yml&label=compose%20files&color=orange)
[![Visitors](https://api.visitorbadge.io/api/visitors?path=av%2Fharbor&countColor=%23263759&style=flat)](https://visitorbadge.io/status?path=av%2Fharbor)
![GitHub language count](https://img.shields.io/github/languages/count/av/harbor)
[![Discord](https://img.shields.io/badge/Discord-Harbor-blue?logo=discord&logoColor=white)](https://discord.gg/8nDRphrhSF)Effortlessly run LLM backends, APIs, frontends, and services with one command.
Harbor is a containerized LLM toolkit that allows you to run LLMs and additional services. It consists of a CLI and a companion App that allows you to manage and run AI services with ease.
![Screenshot of Harbor CLI and App together](https://github.com/av/harbor/wiki/harbor-app-3.png)
## Services
##### UIs
[Open WebUI](https://github.com/av/harbor/wiki/2.1.1-Frontend:-Open-WebUI) ⦁︎
[ComfyUI](https://github.com/av/harbor/wiki/2.1.2-Frontend:-ComfyUI) ⦁︎
[LibreChat](https://github.com/av/harbor/wiki/2.1.3-Frontend:-LibreChat) ⦁︎
[HuggingFace ChatUI](https://github.com/av/harbor/wiki/2.1.4-Frontend:-ChatUI) ⦁︎
[Lobe Chat](https://github.com/av/harbor/wiki/2.1.5-Frontend:-Lobe-Chat) ⦁︎
[Hollama](https://github.com/av/harbor/wiki/2.1.6-Frontend:-hollama) ⦁︎
[parllama](https://github.com/av/harbor/wiki/2.1.7-Frontend:-parllama) ⦁︎
[BionicGPT](https://github.com/av/harbor/wiki/2.1.8-Frontend:-BionicGPT) ⦁︎
[AnythingLLM](https://github.com/av/harbor/wiki/2.1.9-Frontend:-AnythingLLM) ⦁︎
[Chat Nio](https://github.com/av/harbor/wiki/2.1.10-Frontend:-Chat-Nio)##### Backends
[Ollama](https://github.com/av/harbor/wiki/2.2.1-Backend:-Ollama) ⦁︎
[llama.cpp](https://github.com/av/harbor/wiki/2.2.2-Backend:-llama.cpp) ⦁︎
[vLLM](https://github.com/av/harbor/wiki/2.2.3-Backend:-vLLM) ⦁︎
[TabbyAPI](https://github.com/av/harbor/wiki/2.2.4-Backend:-TabbyAPI) ⦁︎
[Aphrodite Engine](https://github.com/av/harbor/wiki/2.2.5-Backend:-Aphrodite-Engine) ⦁︎
[mistral.rs](https://github.com/av/harbor/wiki/2.2.6-Backend:-mistral.rs) ⦁︎
[openedai-speech](https://github.com/av/harbor/wiki/2.2.7-Backend:-openedai-speech) ⦁︎
[faster-whisper-server](https://github.com/av/harbor/wiki/2.2.14-Backend:-Faster-Whisper) ⦁︎
[Parler](https://github.com/av/harbor/wiki/2.2.8-Backend:-Parler) ⦁︎
[text-generation-inference](https://github.com/av/harbor/wiki/2.2.9-Backend:-text-generation-inference) ⦁︎
[LMDeploy](https://github.com/av/harbor/wiki/2.2.10-Backend:-lmdeploy) ⦁︎
[AirLLM](https://github.com/av/harbor/wiki/2.2.11-Backend:-AirLLM) ⦁︎
[SGLang](https://github.com/av/harbor/wiki/2.2.12-Backend:-SGLang) ⦁︎
[KTransformers](https://github.com/av/harbor/wiki/2.2.13-Backend:-KTransformers) ⦁︎
[Nexa SDK](https://github.com/av/harbor/wiki/2.2.15-Backend:-Nexa-SDK)##### Satellites
[Harbor Bench](https://github.com/av/harbor/wiki/5.1.-Harbor-Bench) ⦁︎
[Harbor Boost](https://github.com/av/harbor/wiki/5.2.-Harbor-Boost) ⦁︎
[SearXNG](https://github.com/av/harbor/wiki/2.3.1-Satellite:-SearXNG) ⦁︎
[Perplexica](https://github.com/av/harbor/wiki/2.3.2-Satellite:-Perplexica) ⦁︎
[Dify](https://github.com/av/harbor/wiki/2.3.3-Satellite:-Dify) ⦁︎
[Plandex](https://github.com/av/harbor/wiki/2.3.4-Satellite:-Plandex) ⦁︎
[LiteLLM](https://github.com/av/harbor/wiki/2.3.5-Satellite:-LiteLLM) ⦁︎
[LangFuse](https://github.com/av/harbor/wiki/2.3.6-Satellite:-langfuse) ⦁︎
[Open Interpreter](https://github.com/av/harbor/wiki/2.3.7-Satellite:-Open-Interpreter) ⦁
︎[cloudflared](https://github.com/av/harbor/wiki/2.3.8-Satellite:-cloudflared) ⦁︎
[cmdh](https://github.com/av/harbor/wiki/2.3.9-Satellite:-cmdh) ⦁︎
[fabric](https://github.com/av/harbor/wiki/2.3.10-Satellite:-fabric) ⦁︎
[txtai RAG](https://github.com/av/harbor/wiki/2.3.11-Satellite:-txtai-RAG) ⦁︎
[TextGrad](https://github.com/av/harbor/wiki/2.3.12-Satellite:-TextGrad) ⦁︎
[Aider](https://github.com/av/harbor/wiki/2.3.13-Satellite:-aider) ⦁︎
[aichat](https://github.com/av/harbor/wiki/2.3.14-Satellite:-aichat) ⦁︎
[omnichain](https://github.com/av/harbor/wiki/2.3.16-Satellite:-omnichain) ⦁︎
[lm-evaluation-harness](https://github.com/av/harbor/wiki/2.3.17-Satellite:-lm-evaluation-harness) ⦁︎
[JupyterLab](https://github.com/av/harbor/wiki/2.3.18-Satellite:-JupyterLab) ⦁︎
[ol1](https://github.com/av/harbor/wiki/2.3.19-Satellite:-ol1) ⦁︎
[OpenHands](https://github.com/av/harbor/wiki/2.3.20-Satellite:-OpenHands) ⦁︎
[LitLytics](https://github.com/av/harbor/wiki/2.3.21-Satellite:-LitLytics) ⦁︎
[Repopack](https://github.com/av/harbor/wiki/2.3.22-Satellite:-Repopack) ⦁︎
[n8n](https://github.com/av/harbor/wiki/2.3.23-Satellite:-n8n) ⦁︎
[Bolt.new](https://github.com/av/harbor/wiki/2.3.24-Satellite:-Bolt.new) ⦁︎
[Open WebUI Pipelines](https://github.com/av/harbor/wiki/2.3.25-Satellite:-Open-WebUI-Pipelines) ⦁︎
[Qdrant](https://github.com/av/harbor/wiki/2.3.26-Satellite:-Qdrant) ⦁︎
[K6](https://github.com/av/harbor/wiki/2.3.27-Satellite:-K6) ⦁︎
[Promptfoo](https://github.com/av/harbor/wiki/2.3.28-Satellite:-Promptfoo) ⦁︎
[Webtop](https://github.com/av/harbor/wiki/2.3.29-Satellite:-Webtop) ⦁︎
[OmniParser](https://github.com/av/harbor/wiki/2.3.30-Satellite:-OmniParser) ⦁︎
[Flowise](https://github.com/av/harbor/wiki/2.3.31-Satellite:-Flowise) ⦁︎
[Langflow](https://github.com/av/harbor/wiki/2.3.32-Satellite:-LangFlow) ⦁︎
[OptiLLM](https://github.com/av/harbor/wiki/2.3.33-Satellite:-OptiLLM)See [services documentation](https://github.com/av/harbor/wiki/2.-Services) for a brief overview of each.
## Blitz Tour
![Diagram outlining Harbor's service structure](https://raw.githubusercontent.com/wiki/av/harbor/harbor-arch-diag.png)
```bash
# Run Harbor with default services:
# Open WebUI and Ollama
harbor up# Run Harbor with additional services
# Running SearXNG automatically enables Web RAG in Open WebUI
harbor up searxng# Run additional/alternative LLM Inference backends
# Open Webui is automatically connected to them.
harbor up llamacpp tgi litellm vllm tabbyapi aphrodite sglang ktransformers# Run different Frontends
harbor up librechat chatui bionicgpt hollama# Get a free quality boost with
# built-in optimizing proxy
harbor up boost# Use FLUX in Open WebUI in one command
harbor up comfyui# Use custom models for supported backends
harbor llamacpp model https://huggingface.co/user/repo/model.gguf# Shortcut to HF Hub to find the models
harbor hf find gguf gemma-2
# Use HFDownloader and official HF CLI to download models
harbor hf dl -m google/gemma-2-2b-it -c 10 -s ./hf
harbor hf download google/gemma-2-2b-it# Where possible, cache is shared between the services
harbor tgi model google/gemma-2-2b-it
harbor vllm model google/gemma-2-2b-it
harbor aphrodite model google/gemma-2-2b-it
harbor tabbyapi model google/gemma-2-2b-it-exl2
harbor mistralrs model google/gemma-2-2b-it
harbor opint model google/gemma-2-2b-it
harbor sglang model google/gemma-2-2b-it# Convenience tools for docker setup
harbor logs llamacpp
harbor exec llamacpp ./scripts/llama-bench --help
harbor shell vllm# Tell your shell exactly what you think about it
harbor opint
harbor aider
harbor aichat
harbor cmdh# Use fabric to LLM-ify your linux pipes
cat ./file.md | harbor fabric --pattern extract_extraordinary_claims | grep "LK99"# Access service CLIs without installing them
harbor hf scan-cache
harbor ollama list# Open services from the CLI
harbor open webui
harbor open llamacpp
# Print yourself a QR to quickly open the
# service on your phone
harbor qr
# Feeling adventurous? Expose your harbor
# to the internet
harbor tunnel# Config management
harbor config list
harbor config set webui.host.port 8080# Create and manage config profiles
harbor profile save l370b
harbor profile use default# Lookup recently used harbor commands
harbor history# Eject from Harbor into a standalone Docker Compose setup
# Will export related services and variables into a standalone file.
harbor eject searxng llamacpp > docker-compose.harbor.yml# Run a build-in LLM benchmark with
# your own tasks
harbor bench run# Gimmick/Fun Area
# Argument scrambling, below commands are all the same as above
# Harbor doesn't care if it's "vllm model" or "model vllm", it'll
# figure it out.
harbor model vllm
harbor vllm modelharbor config get webui.name
harbor get config webui_nameharbor tabbyapi shell
harbor shell tabbyapi# 50% gimmick, 50% useful
# Ask harbor about itself
harbor how to ping ollama container from the webui?
```## Harbor App Demo
https://github.com/user-attachments/assets/a5cd2ef1-3208-400a-8866-7abd85808503
In the demo, Harbor App is used to launch a default stack with [Ollama](./2.2.1-Backend:-Ollama) and [Open WebUI](./2.1.1-Frontend:-Open-WebUI) services. Later, [SearXNG](./2.3.1-Satellite:-SearXNG) is also started, and WebUI can connect to it for the Web RAG right out of the box. After that, [Harbor Boost](./5.2.-Harbor-Boost) is also started and connected to the WebUI automatically to induce more creative outputs. As a final step, Harbor config is adjusted in the App for the [`klmbr`](./5.2.-Harbor-Boost#klmbr---boost-llm-creativity) module in the [Harbor Boost](./5.2.-Harbor-Boost), which makes the output unparseable for the LLM (yet still undetstandable for humans).
## Documentation
- [Installing Harbor](https://github.com/av/harbor/wiki/1.0.-Installing-Harbor)
Guides to install Harbor CLI and App
- [Harbor User Guide](https://github.com/av/harbor/wiki/1.-Harbor-User-Guide)
High-level overview of working with Harbor
- [Harbor App](https://github.com/av/harbor/wiki/1.1-Harbor-App)
Overview and manual for the Harbor companion application
- [Harbor Services](https://github.com/av/harbor/wiki/2.-Services)
Catalog of services available in Harbor
- [Harbor CLI Reference](https://github.com/av/harbor/wiki/3.-Harbor-CLI-Reference)
Read more about Harbor CLI commands and options.
Read about supported services and the ways to configure them.
- [Compatibility](https://github.com/av/harbor/wiki/4.-Compatibility)
Known compatibility issues between the services and models as well as possible workarounds.
- [Harbor Bench](https://github.com/av/harbor/wiki/5.1.-Harbor-Bench)
Documentation for the built-in LLM benchmarking service.
- [Harbor Boost](https://github.com/av/harbor/wiki/5.2.-Harbor-Boost)
Documentation for the built-in LLM optimiser proxy.
- [Harbor Compose Setup](https://github.com/av/harbor/wiki/6.-Harbor-Compose-Setup)
Read about the way Harbor uses Docker Compose to manage services.
- [Adding A New Service](https://github.com/av/harbor/wiki/7.-Adding-A-New-Service)
Documentation on bringing more services into the Harbor toolkit.## Why?
- Convenience factor
- Workflow/setup centralisationIf you're comfortable with Docker and Linux administration - you likely don't need Harbor per se to manage your local LLM environment. However, you're also likely to eventually arrive to a similar solution. I know this for a fact, since I was rocking pretty much similar setup, just without all the whistles and bells.
Harbor is not designed as a deployment solution, but rather as a helper for the local LLM development environment. It's a good starting point for experimenting with LLMs and related services.
You can later eject from Harbor and use the services in your own setup, or continue using Harbor as a base for your own configuration.
## Overview and Features
This project consists of a fairly large shell CLI, fairly small `.env` file and enourmous (for one repo) amount of `docker-compose` files.
#### Features
- Manage local LLM stack with a concise CLI
- Convenience utilities for common tasks (model management, configuration, service debug, URLs, tunnels, etc.)
- Access service CLIs (`hf`, `ollama`, etc.) via Docker without install
- Services are pre-configured to work together (contributions welcome)
- Host cache is shared and reused - Hugging Face, ollama, etc.
- Co-located service configs
- Built-in LLM benchmarking service
- Manage configuration profiles for different use cases
- Eject to run without harbor with `harbor eject`