https://github.com/av/harbor
Effortlessly run LLM backends, APIs, frontends, and services with one command.
https://github.com/av/harbor
ai bash cli container docker docker-compose exl2 gguf llm local mcp npm package pypi safetensors self-hosted tool tools
Last synced: 9 days ago
JSON representation
Effortlessly run LLM backends, APIs, frontends, and services with one command.
- Host: GitHub
- URL: https://github.com/av/harbor
- Owner: av
- License: apache-2.0
- Created: 2024-07-27T18:46:59.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2025-04-05T21:17:21.000Z (17 days ago)
- Last Synced: 2025-04-06T10:01:30.575Z (16 days ago)
- Topics: ai, bash, cli, container, docker, docker-compose, exl2, gguf, llm, local, mcp, npm, package, pypi, safetensors, self-hosted, tool, tools
- Language: Python
- Homepage: https://github.com/av/harbor
- Size: 24.1 MB
- Stars: 1,529
- Watchers: 14
- Forks: 106
- Open Issues: 34
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
- awesome-ai-tools - Harbor - run LLM backends, APIs, frontends, and services with one command (Other / Music)
- trackawesomelist - Harbor (⭐458) - run LLM backends, APIs, frontends, and services with one command (Recently Updated / [Oct 28, 2024](/content/2024/10/28/README.md))
- awesome_ai_agents - Harbor - Effortlessly run LLM backends, APIs, frontends, and services with one command. (Building / Tools)
- awesome_ai_agents - Harbor - Effortlessly run LLM backends, APIs, frontends, and services with one command. (Building / Tools)
README

[](https://github.com/av/harbor/releases)
[](https://www.npmjs.com/package/@avcodes/harbor)
[](https://pypi.org/project/llm-harbor/)


[](https://visitorbadge.io/status?path=av%2Fharbor)

[](https://discord.gg/8nDRphrhSF)
Effortlessly run LLM backends, APIs, frontends, and services with one command.
Harbor is a containerized LLM toolkit that allows you to run LLMs and additional services. It consists of a CLI and a companion App that allows you to manage and run AI services with ease.

## What can Harbor do?

## ✦ Local LLMs
Run LLMs and related services locally, with no or minimal configuration, typically in a single command or click.
```bash
# Starts fully configured
# Open WebUI and Ollama
harbor up# All backends are pre-connected to Open WebUI
harbor up vllm
```## Cutting Edge Inference
Harbor supports most of the major inference engines as well as a few of the lesser-known ones.
```bash
# We sincerely hope you'll never try to run all of them at once
harbor up vllm llamacpp tgi litellm tabbyapi aphrodite sglang ktransformers mistralrs airllm
```## Tool Use
Enjoy the benefits of MCP ecosystem, extend it to your use-cases.
```bash
# Manage MCPs with a convenient Web UI
harbor up metamcp# Connect MCPs to Open WebUI
harbor up metamcp mcpo
```## Generate Images
Harbor includes ComfyUI + Flux + Open WebUI integration.
```bash
# Use FLUX in Open WebUI in one command
harbor up comfyui
```## Local Perplexity
Harbor includes SearXNG that is pre-connected to a lot of services out of the box. Connect your LLM to the Web.
```bash
# SearXNG is pre-connected to Open WebUI
harbor up searxng
```## LLM Workflows
Harbor includes multiple services for build LLM-based data and chat workflows: [Dify](./docs/2.3.3-Satellite&colon-Dify), [LitLytics](./docs/2.3.21-Satellite&colon-LitLytics), [n8n](./docs/2.3.23-Satellite&colon-n8n), [Open WebUI Pipelines](./docs/2.3.25-Satellite&colon-Open-WebUI-Pipelines), [FloWise](./docs/2.3.31-Satellite&colon-Flowise), [LangFlow](./docs/2.3.32-Satellite&colon-LangFlow)
```bash
# Use Dify in Open WebUI
harbor up dify
```## Talk to your LLM
Setup voice chats with your LLM in a single command. Open WebUI + Speaches
```bash
# Speaches includes OpenAI-compatible SST and TTS
# and connected to Open WebUI out of the box
harbor up speaches
```## Chat from the phone
You can access Harbor services from your phone with a QR code. Easily get links for local, LAN or Docker access.
```bash
# Print a QR code to open the service on your phone
harbor qr
# Print a link to open the service on your phone
harbor url webui
```## Chat from anywhere
Harbor includes a built-in tunneling service to expose your Harbor to the internet.
```bash
# Expose your Harbor to the internet
harbor tunnel
```## LLM Scripting
[Harbor Boost](./docs/5.2.-Harbor-Boost) allows you to [easily script workflows](./docs/5.2.1.-Harbor-Boost-Custom-Modules) and interactions with downstream LLMs.
```bash
# Use Harbor Boost to script LLM workflows
harbor up boost
```## Config Profiles
Save and manage configuration profiles for different scenarios. For example - save [llama.cpp](./docs/2.2.2-Backend&colon-llama.cpp) args for different models and contexts and switch between them easily.
```bash
# Save and use config profiles
harbor profile save llama4
harbor profile use default
```## Command History
Harbor keeps a local-only history of recent commands. Look up and re-run easily, standalone from the system shell history.
```bash
# Lookup recently used harbor commands
harbor history
```## Eject
Ready to move to your own setup? Harbor will give you a docker-compose file replicating your setup.
```bash
# Eject from Harbor into a standalone Docker Compose setup
# Will export related services and variables into a standalone file.
harbor eject searxng llamacpp > docker-compose.harbor.yml
```---
## Services
##### UIs
[Open WebUI](https://github.com/av/harbor/wiki/2.1.1-Frontend:-Open-WebUI) ⦁︎
[ComfyUI](https://github.com/av/harbor/wiki/2.1.2-Frontend:-ComfyUI) ⦁︎
[LibreChat](https://github.com/av/harbor/wiki/2.1.3-Frontend:-LibreChat) ⦁︎
[HuggingFace ChatUI](https://github.com/av/harbor/wiki/2.1.4-Frontend:-ChatUI) ⦁︎
[Lobe Chat](https://github.com/av/harbor/wiki/2.1.5-Frontend:-Lobe-Chat) ⦁︎
[Hollama](https://github.com/av/harbor/wiki/2.1.6-Frontend:-hollama) ⦁︎
[parllama](https://github.com/av/harbor/wiki/2.1.7-Frontend:-parllama) ⦁︎
[BionicGPT](https://github.com/av/harbor/wiki/2.1.8-Frontend:-BionicGPT) ⦁︎
[AnythingLLM](https://github.com/av/harbor/wiki/2.1.9-Frontend:-AnythingLLM) ⦁︎
[Chat Nio](https://github.com/av/harbor/wiki/2.1.10-Frontend:-Chat-Nio) ⦁︎
[mikupad](https://github.com/av/harbor/wiki/2.1.11-Frontend:-Mikupad) ⦁︎
[oterm](https://github.com/av/harbor/wiki/2.1.12-Frontend-oterm)##### Backends
[Ollama](https://github.com/av/harbor/wiki/2.2.1-Backend:-Ollama) ⦁︎
[llama.cpp](https://github.com/av/harbor/wiki/2.2.2-Backend:-llama.cpp) ⦁︎
[vLLM](https://github.com/av/harbor/wiki/2.2.3-Backend:-vLLM) ⦁︎
[TabbyAPI](https://github.com/av/harbor/wiki/2.2.4-Backend:-TabbyAPI) ⦁︎
[Aphrodite Engine](https://github.com/av/harbor/wiki/2.2.5-Backend:-Aphrodite-Engine) ⦁︎
[mistral.rs](https://github.com/av/harbor/wiki/2.2.6-Backend:-mistral.rs) ⦁︎
[openedai-speech](https://github.com/av/harbor/wiki/2.2.7-Backend:-openedai-speech) ⦁︎
[Speaches](https://github.com/av/harbor/wiki/2.2.14-Backend:-Speaches) ⦁︎
[Parler](https://github.com/av/harbor/wiki/2.2.8-Backend:-Parler) ⦁︎
[text-generation-inference](https://github.com/av/harbor/wiki/2.2.9-Backend:-text-generation-inference) ⦁︎
[LMDeploy](https://github.com/av/harbor/wiki/2.2.10-Backend:-lmdeploy) ⦁︎
[AirLLM](https://github.com/av/harbor/wiki/2.2.11-Backend:-AirLLM) ⦁︎
[SGLang](https://github.com/av/harbor/wiki/2.2.12-Backend:-SGLang) ⦁︎
[KTransformers](https://github.com/av/harbor/wiki/2.2.13-Backend:-KTransformers) ⦁︎
[Nexa SDK](https://github.com/av/harbor/wiki/2.2.15-Backend:-Nexa-SDK) ⦁︎
[KoboldCpp](https://github.com/av/harbor/wiki/2.2.16-Backend:-KoboldCpp)##### Satellites
[Harbor Bench](https://github.com/av/harbor/wiki/5.1.-Harbor-Bench) ⦁︎
[Harbor Boost](https://github.com/av/harbor/wiki/5.2.-Harbor-Boost) ⦁︎
[SearXNG](https://github.com/av/harbor/wiki/2.3.1-Satellite:-SearXNG) ⦁︎
[Perplexica](https://github.com/av/harbor/wiki/2.3.2-Satellite:-Perplexica) ⦁︎
[Dify](https://github.com/av/harbor/wiki/2.3.3-Satellite:-Dify) ⦁︎
[Plandex](https://github.com/av/harbor/wiki/2.3.4-Satellite:-Plandex) ⦁︎
[LiteLLM](https://github.com/av/harbor/wiki/2.3.5-Satellite:-LiteLLM) ⦁︎
[LangFuse](https://github.com/av/harbor/wiki/2.3.6-Satellite:-langfuse) ⦁︎
[Open Interpreter](https://github.com/av/harbor/wiki/2.3.7-Satellite:-Open-Interpreter) ⦁
︎[cloudflared](https://github.com/av/harbor/wiki/2.3.8-Satellite:-cloudflared) ⦁︎
[cmdh](https://github.com/av/harbor/wiki/2.3.9-Satellite:-cmdh) ⦁︎
[fabric](https://github.com/av/harbor/wiki/2.3.10-Satellite:-fabric) ⦁︎
[txtai RAG](https://github.com/av/harbor/wiki/2.3.11-Satellite:-txtai-RAG) ⦁︎
[TextGrad](https://github.com/av/harbor/wiki/2.3.12-Satellite:-TextGrad) ⦁︎
[Aider](https://github.com/av/harbor/wiki/2.3.13-Satellite:-aider) ⦁︎
[aichat](https://github.com/av/harbor/wiki/2.3.14-Satellite:-aichat) ⦁︎
[omnichain](https://github.com/av/harbor/wiki/2.3.16-Satellite:-omnichain) ⦁︎
[lm-evaluation-harness](https://github.com/av/harbor/wiki/2.3.17-Satellite:-lm-evaluation-harness) ⦁︎
[JupyterLab](https://github.com/av/harbor/wiki/2.3.18-Satellite:-JupyterLab) ⦁︎
[ol1](https://github.com/av/harbor/wiki/2.3.19-Satellite:-ol1) ⦁︎
[OpenHands](https://github.com/av/harbor/wiki/2.3.20-Satellite:-OpenHands) ⦁︎
[LitLytics](https://github.com/av/harbor/wiki/2.3.21-Satellite:-LitLytics) ⦁︎
[Repopack](https://github.com/av/harbor/wiki/2.3.22-Satellite:-Repopack) ⦁︎
[n8n](https://github.com/av/harbor/wiki/2.3.23-Satellite:-n8n) ⦁︎
[Bolt.new](https://github.com/av/harbor/wiki/2.3.24-Satellite:-Bolt.new) ⦁︎
[Open WebUI Pipelines](https://github.com/av/harbor/wiki/2.3.25-Satellite:-Open-WebUI-Pipelines) ⦁︎
[Qdrant](https://github.com/av/harbor/wiki/2.3.26-Satellite:-Qdrant) ⦁︎
[K6](https://github.com/av/harbor/wiki/2.3.27-Satellite:-K6) ⦁︎
[Promptfoo](https://github.com/av/harbor/wiki/2.3.28-Satellite:-Promptfoo) ⦁︎
[Webtop](https://github.com/av/harbor/wiki/2.3.29-Satellite:-Webtop) ⦁︎
[OmniParser](https://github.com/av/harbor/wiki/2.3.30-Satellite:-OmniParser) ⦁︎
[Flowise](https://github.com/av/harbor/wiki/2.3.31-Satellite:-Flowise) ⦁︎
[Langflow](https://github.com/av/harbor/wiki/2.3.32-Satellite:-LangFlow) ⦁︎
[OptiLLM](https://github.com/av/harbor/wiki/2.3.33-Satellite:-OptiLLM) ⦁︎
[Morphic](https://github.com/av/harbor/wiki/2.3.34-Satellite-Morphic) ⦁︎
[SQL Chat](https://github.com/av/harbor/wiki/2.3.35-Satellite-SQL-Chat) ⦁︎
[gptme](https://github.com/av/harbor/wiki/2.3.36-Satellite-gptme) ⦁︎
[traefik](https://github.com/av/harbor/wiki/2.3.37-Satellite-traefik) ⦁︎
[Latent Scope](https://github.com/av/harbor/wiki/2.3.38-Satellite-Latent-Scope) ⦁︎
[RAGLite](https://github.com/av/harbor/wiki/2.3.39-Satellite-RAGLite) ⦁︎
[llama-swap](https://github.com/av/harbor/wiki/2.3.40-Satellite-llamaswap) ⦁︎
[LibreTranslate](https://github.com/av/harbor/wiki/2.3.41-Satellite-LibreTranslate) ⦁︎
[MetaMCP](https://github.com/av/harbor/wiki/2.3.42-Satellite-MetaMCP) ⦁︎
[mcpo](https://github.com/av/harbor/wiki/2.3.43-Satellite-mcpo)See [services documentation](https://github.com/av/harbor/wiki/2.-Services) for a brief overview of each.
## CLI Tour
```bash
# Run Harbor with default services:
# Open WebUI and Ollama
harbor up# Run Harbor with additional services
# Running SearXNG automatically enables Web RAG in Open WebUI
harbor up searxng# Speaches includes OpenAI-compatible SST and TTS
# and connected to Open WebUI out of the box
harbor up speaches# Run additional/alternative LLM Inference backends
# Open Webui is automatically connected to them.
harbor up llamacpp tgi litellm vllm tabbyapi aphrodite sglang ktransformers# Run different Frontends
harbor up librechat chatui bionicgpt hollama# Get a free quality boost with
# built-in optimizing proxy
harbor up boost# Use FLUX in Open WebUI in one command
harbor up comfyui# Use custom models for supported backends
harbor llamacpp model https://huggingface.co/user/repo/model.gguf# Access service CLIs without installing them
# Caches are shared between services where possible
harbor hf scan-cache
harbor hf download google/gemma-2-2b-it
harbor ollama list# Shortcut to HF Hub to find the models
harbor hf find gguf gemma-2
# Use HFDownloader and official HF CLI to download models
harbor hf dl -m google/gemma-2-2b-it -c 10 -s ./hf
harbor hf download google/gemma-2-2b-it# Where possible, cache is shared between the services
harbor tgi model google/gemma-2-2b-it
harbor vllm model google/gemma-2-2b-it
harbor aphrodite model google/gemma-2-2b-it
harbor tabbyapi model google/gemma-2-2b-it-exl2
harbor mistralrs model google/gemma-2-2b-it
harbor opint model google/gemma-2-2b-it
harbor sglang model google/gemma-2-2b-it# Convenience tools for docker setup
harbor logs llamacpp
harbor exec llamacpp ./scripts/llama-bench --help
harbor shell vllm# Tell your shell exactly what you think about it
harbor opint
harbor aider
harbor aichat
harbor cmdh# Use fabric to LLM-ify your linux pipes
cat ./file.md | harbor fabric --pattern extract_extraordinary_claims | grep "LK99"# Open services from the CLI
harbor open webui
harbor open llamacpp
# Print yourself a QR to quickly open the
# service on your phone
harbor qr
# Feeling adventurous? Expose your Harbor
# to the internet
harbor tunnel# Config management
harbor config list
harbor config set webui.host.port 8080# Create and manage config profiles
harbor profile save l370b
harbor profile use default# Lookup recently used harbor commands
harbor history# Eject from Harbor into a standalone Docker Compose setup
# Will export related services and variables into a standalone file.
harbor eject searxng llamacpp > docker-compose.harbor.yml# Run a built-in LLM benchmark with
# your own tasks
harbor bench run# Gimmick/Fun Area
# Argument scrambling, below commands are all the same as above
# Harbor doesn't care if it's "vllm model" or "model vllm", it'll
# figure it out.
harbor model vllm
harbor vllm modelharbor config get webui.name
harbor get config webui_nameharbor tabbyapi shell
harbor shell tabbyapi# 50% gimmick, 50% useful
# Ask harbor about itself
harbor how to ping ollama container from the webui?
```## Harbor App Demo
https://github.com/user-attachments/assets/a5cd2ef1-3208-400a-8866-7abd85808503
In the demo, Harbor App is used to launch a default stack with [Ollama](./2.2.1-Backend:-Ollama) and [Open WebUI](./2.1.1-Frontend:-Open-WebUI) services. Later, [SearXNG](./2.3.1-Satellite:-SearXNG) is also started, and WebUI can connect to it for the Web RAG right out of the box. After that, [Harbor Boost](./5.2.-Harbor-Boost) is also started and connected to the WebUI automatically to induce more creative outputs. As a final step, Harbor config is adjusted in the App for the [`klmbr`](./5.2.-Harbor-Boost#klmbr---boost-llm-creativity) module in the [Harbor Boost](./5.2.-Harbor-Boost), which makes the output unparsable for the LLM (yet still undetstandable for humans).
## Documentation
- [Installing Harbor](https://github.com/av/harbor/wiki/1.0.-Installing-Harbor)
Guides to install Harbor CLI and App
- [Harbor User Guide](https://github.com/av/harbor/wiki/1.-Harbor-User-Guide)
High-level overview of working with Harbor
- [Harbor App](https://github.com/av/harbor/wiki/1.1-Harbor-App)
Overview and manual for the Harbor companion application
- [Harbor Services](https://github.com/av/harbor/wiki/2.-Services)
Catalog of services available in Harbor
- [Harbor CLI Reference](https://github.com/av/harbor/wiki/3.-Harbor-CLI-Reference)
Read more about Harbor CLI commands and options.
Read about supported services and the ways to configure them.
- [Compatibility](https://github.com/av/harbor/wiki/4.-Compatibility)
Known compatibility issues between the services and models as well as possible workarounds.
- [Harbor Bench](https://github.com/av/harbor/wiki/5.1.-Harbor-Bench)
Documentation for the built-in LLM benchmarking service.
- [Harbor Boost](https://github.com/av/harbor/wiki/5.2.-Harbor-Boost)
Documentation for the built-in LLM optimiser proxy.
- [Harbor Compose Setup](https://github.com/av/harbor/wiki/6.-Harbor-Compose-Setup)
Read about the way Harbor uses Docker Compose to manage services.
- [Adding A New Service](https://github.com/av/harbor/wiki/7.-Adding-A-New-Service)
Documentation on bringing more services into the Harbor toolkit.
- [Join our Discord](https://discord.gg/8nDRphrhSF0)
Get help, share your experience, and contribute to the project.## Why?
- If you're comfortable with Docker and Linux administration - you likely don't need Harbor to manage your local LLM environment. However, while growing it - you're also likely to eventually arrive to a similar solution. I know this for a fact, since that's exactly how Harbor came to be.
- Harbor is not designed as a deployment solution, but rather as a helper for the local LLM development environment. It's a good starting point for experimenting with LLMs and related services.
- Workflow/setup centralisation - you can be sure where to find a specific config or service, logs, data and configuration files.
- Convenience factor - single CLI with a lot of services and features, accessible from anywhere on your host.## Supporters

