Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/avanetten/yoltv5
YOLT, now with PyTorch.
https://github.com/avanetten/yoltv5
Last synced: 3 months ago
JSON representation
YOLT, now with PyTorch.
- Host: GitHub
- URL: https://github.com/avanetten/yoltv5
- Owner: avanetten
- License: gpl-3.0
- Created: 2022-02-04T12:26:42.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-02-09T07:33:53.000Z (over 1 year ago)
- Last Synced: 2024-06-16T15:44:17.284Z (5 months ago)
- Language: Python
- Size: 1.9 MB
- Stars: 192
- Watchers: 8
- Forks: 27
- Open Issues: 14
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - YOLTv5
- awesome-yolo-object-detection - YOLTv5
README
# YOLTv5 #
![Alt text](/results/__examples/header.jpg?raw=true "")
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.
YOLTv5 builds upon [YOLT]( https://github.com/avanetten/yolt) and [SIMRDWN]( https://github.com/avanetten/simrdwn), and updates these frameworks to use the [YOLOv5](https://github.com/ultralytics/yolov5) version of the [YOLO](https://pjreddie.com/darknet/yolo/) object detection family. This repository has generally similar performance to the [Darknet](https://pjreddie.com/darknet/)-based [YOLTv4](https://github.com/avanetten/yoltv4) repository. For those users who prefer a [PyTorch](https://pytorch.org) backend, however, we provide YOLTv5.
Below, we provide examples of how to use this repository with the open-source [SpaceNet](https://spacenet.ai) dataset.
____
## Running YOLTv5___
### 0. Installation (Preliminary)
YOLTv5 is built to execute on a GPU-enabled machine.
cd yoltv5/yolov5
pip install -r requirements.txt# update with geo packages
conda install -c conda-forge gdal
conda install -c conda-forge osmnx=0.12
conda install -c conda-forge scikit-image
conda install -c conda-forge statsmodels
pip install torchsummary
pip install utm
pip install numba
pip install jinja2==2.10___
### 1. Train
Training preparation is accomplished via [prep_train.py](https://github.com/avanetten/yoltv5/blob/main/yoltv5/prep_train.py). To train a model, run:
cd /yoltv5
python yolov5/train.py --img 640 --batch 16 --epochs 100 --data yoltv5_train_vehicles_8cat.yaml --weights yolov5l.pt___
### 2. Test
Simply edit [yoltv5_test_vehicles_8cat.yaml](https://github.com/avanetten/yoltv5/blob/main/configs/yoltv5_test_vehicles_8cat.yaml) to point to the appropriate locations, then run the _test.sh_ script:
cd yoltv5
./test.sh ../configs/yoltv5_test_vehicles_8cat.yamlOutputs will look something like the figure below (cars=green, trucks=red, buses=blue):
![Alt text](/results/__examples/khartoum_example0.jpg?raw=true "")