Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/avanetten/yoltv5

YOLT, now with PyTorch.
https://github.com/avanetten/yoltv5

Last synced: 2 months ago
JSON representation

YOLT, now with PyTorch.

Awesome Lists containing this project

README

        

# YOLTv5 #

![Alt text](/results/__examples/header.jpg?raw=true "")

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

YOLTv5 builds upon [YOLT]( https://github.com/avanetten/yolt) and [SIMRDWN]( https://github.com/avanetten/simrdwn), and updates these frameworks to use the [YOLOv5](https://github.com/ultralytics/yolov5) version of the [YOLO](https://pjreddie.com/darknet/yolo/) object detection family. This repository has generally similar performance to the [Darknet](https://pjreddie.com/darknet/)-based [YOLTv4](https://github.com/avanetten/yoltv4) repository. For those users who prefer a [PyTorch](https://pytorch.org) backend, however, we provide YOLTv5.

Below, we provide examples of how to use this repository with the open-source [SpaceNet](https://spacenet.ai) dataset.

____
## Running YOLTv5

___

### 0. Installation (Preliminary)

YOLTv5 is built to execute on a GPU-enabled machine.

cd yoltv5/yolov5
pip install -r requirements.txt

# update with geo packages
conda install -c conda-forge gdal
conda install -c conda-forge osmnx=0.12
conda install -c conda-forge scikit-image
conda install -c conda-forge statsmodels
pip install torchsummary
pip install utm
pip install numba
pip install jinja2==2.10

___

### 1. Train

Training preparation is accomplished via [prep_train.py](https://github.com/avanetten/yoltv5/blob/main/yoltv5/prep_train.py). To train a model, run:

cd /yoltv5
python yolov5/train.py --img 640 --batch 16 --epochs 100 --data yoltv5_train_vehicles_8cat.yaml --weights yolov5l.pt

___

### 2. Test

Simply edit [yoltv5_test_vehicles_8cat.yaml](https://github.com/avanetten/yoltv5/blob/main/configs/yoltv5_test_vehicles_8cat.yaml) to point to the appropriate locations, then run the _test.sh_ script:

cd yoltv5
./test.sh ../configs/yoltv5_test_vehicles_8cat.yaml

Outputs will look something like the figure below (cars=green, trucks=red, buses=blue):

![Alt text](/results/__examples/khartoum_example0.jpg?raw=true "")