Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/aventer-ug/airflow-provider-mesos

Apache Airflow Provider for Mesos
https://github.com/aventer-ug/airflow-provider-mesos

airflow mesos python

Last synced: 24 days ago
JSON representation

Apache Airflow Provider for Mesos

Awesome Lists containing this project

README

        

# Provider for Apache Airflow 2.x to schedule Apache Mesos

[![Docs](https://img.shields.io/static/v1?label=&message=Issues&color=brightgreen)](https://github.com/m3scluster/airflow-provider-mesos/issues)
[![Chat](https://img.shields.io/static/v1?label=&message=Chat&color=brightgreen)](https://matrix.to/#/#mesos:matrix.aventer.biz?via=matrix.aventer.biz)
[![Docs](https://img.shields.io/static/v1?label=&message=Docs&color=brightgreen)](https://m3scluster.github.io/airflow-provider-mesos/)

This provider for Apache Airflow contain the following features:

- MesosExecuter - A scheduler to run Airflow DAG's on mesos
- MesosOperator - To executer Airflow tasks on mesos. (TODO)

## Issues

To open an issue, please use this place: https://github.com/m3scluster/airflow-provider-mesos/issues

## Requirements

- Airflow 2.x
- Apache Mesos minimum 1.6.x

## How to install and configure

On the Airflow Server, we have to install the mesos provider.

```bash
pip install avmesos_airflow_provider
```

Then we will configure Airflow.

```bash
vim airflow.cfg

executor = avmesos_airflow_provider.executors.mesos_executor.MesosExecutor

[mesos]
mesos_ssl = True
master = leader.mesos:5050
framework_name = Airflow
checkpoint = True
attributes = False
failover_timeout = 604800
command_shell = True
task_cpu = 1
task_memory = 20000
authenticate = True
default_principal =
default_secret =
docker_image_slave =
docker_volume_driver = local
docker_volume_dag_name = airflowdags
docker_volume_dag_container_path = /home/airflow/airflow/dags/
docker_sock = /var/run/docker.sock
docker_volume_logs_name = airflowlogs
docker_volume_logs_container_path = /home/airflow/airflow/logs/
docker_environment = '[{ "name":"", "value":"" }, { ... }]'
api_username =
api_password =

```

## DAG example with mesos executor

```python
from airflow import DAG
from datetime import datetime, timedelta
from airflow.operators.dummy_operator import DummyOperator
from airflow.providers.docker.operators.docker import DockerOperator
from airflow.operators.python import PythonOperator

default_args = {
'owner' : 'airflow',
'description' : 'Use of the DockerOperator',
'depend_on_past' : True,
}

with DAG('docker_dag2', default_args=default_args, schedule_interval="*/10 * * * * ", catchup=True, start_date=datetime.now()) as dag:
t2 = DockerOperator(
task_id='docker_command',
image='centos:latest',
api_version='auto',
auto_remove=False,
command="/bin/sleep 600",
docker_url='unix:///var/run/docker.sock',
executor_config={
"cpus": 2.0,
"mem_limit": 2048
}
)

t2
```

## Development

For development and testing we deliver a nix-shell file to install airflow, our airflow provider and postgresql.
To use it, please follow the following steps:

1. Run mesos-mini:

```bash
docker run --rm --name mesos --privileged=true --shm-size=30gb -it --net host avhost/mesos-mini:1.11.0-0.2.0-1 /lib/systemd/systemd
```

2. Use nix-shell:

```bash
nix-shell

> airflow scheduler
```

3. On the mesos-ui (http://localhost:5050) you will see Airflow as framework.