Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/avrabyt/RAG-Chatbot
RAG enabled Chatbots using LangChain and Databutton
https://github.com/avrabyt/RAG-Chatbot
chatbot databutton langchain langchain-python rag rag-implementation
Last synced: about 1 month ago
JSON representation
RAG enabled Chatbots using LangChain and Databutton
- Host: GitHub
- URL: https://github.com/avrabyt/RAG-Chatbot
- Owner: avrabyt
- License: mit
- Created: 2023-10-26T12:22:54.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-11-06T10:48:59.000Z (about 1 year ago)
- Last Synced: 2024-12-01T07:53:56.246Z (about 1 month ago)
- Topics: chatbot, databutton, langchain, langchain-python, rag, rag-implementation
- Language: Python
- Homepage:
- Size: 15.6 MB
- Stars: 133
- Watchers: 4
- Forks: 54
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- jimsghstars - avrabyt/RAG-Chatbot - RAG enabled Chatbots using LangChain and Databutton (Python)
README
# Retrieval Augmented Generation (RAG) for chatbots
RAG enabled Chatbots using [LangChain](https://www.langchain.com) and [Databutton](https://databutton.com/login?utm_source=github&utm_medium=avra&utm_article=rag)
![](https://github.com/avrabyt/RAG-Chatbot/blob/main/thumbnail.webp)- For the front-end : `app.py`
- PDF parsing and indexing : `brain.py`
- API keys are maintained over databutton secret management
- Indexed are stored over session stateOversimplified explanation : (**Retrieval**) Fetch the top N similar contexts via similarity search from the indexed PDF files -> concatanate those to the prompt (**Prompt Augumentation**) -> Pass it to the LLM -> which further generates response (**Generation**) like any LLM does. **More in the blog!**
**Blog Post - [Here](https://medium.com/databutton/why-your-next-ai-product-needs-rag-implemented-in-it-9ee22f9770c8)**
**YouTube video - [Here](https://youtu.be/Yh1GEWqgkt0)**
To get started quickly, you can use the βChat with PDFβ [template](https://databutton.com/new?templateId=pt-x2Rh7dEYwIuCxXaR) within Databutton π
> Alternatively, you can use [Streamlit](https://streamlit.io) to build and deploy! In that case few changes such as `st.secrets` needs to be implemented!
# Similar projects
#### [Building a Simple Chatbot using ChatGPTAPI & Databutton with memory π§ ](https://github.com/avrabyt/MemoryBot)
>Memory implementation can also be an interesting feature in this current RAG enabled Chatbot.
Repo - [MemoryBot](https://github.com/avrabyt/MemoryBot)
The live demo app is hosted over [here](https://next.databutton.com/v/lgzxq112/Memory_Bot)
Blog - [here](https://medium.com/@avra42/how-to-build-a-chatbot-with-chatgpt-api-and-a-conversational-memory-in-python-8d856cda4542)
Video - [here](https://youtu.be/cHjlperESbg)
#### [PDF Chatbot with Memory](https://github.com/avrabyt/PersonalMemoryBot)
> Similar to Chat with PDF approach, with enabled memory.Demo App - [here](https://next.databutton.com/v/lgzxq112/Personalised_Memory_Bot)
Video - [here](https://youtu.be/daMNGGPJkEE)
Blog - [here](https://medium.com/@avra42/how-to-build-a-personalized-pdf-chat-bot-with-conversational-memory-965280c160f8)
![](https://github.com/avrabyt/RAG-Chatbot/blob/main/compare%20medium.gif)