Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aws-samples/aws-machine-learning-university-dte
Machine Learning University: Decision Trees and Ensemble Methods
https://github.com/aws-samples/aws-machine-learning-university-dte
boosting catboost decision-trees lightgbm machine-learning random-forest tabular-data xgboost
Last synced: 26 days ago
JSON representation
Machine Learning University: Decision Trees and Ensemble Methods
- Host: GitHub
- URL: https://github.com/aws-samples/aws-machine-learning-university-dte
- Owner: aws-samples
- License: other
- Created: 2020-12-18T04:18:10.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2023-11-02T21:31:22.000Z (about 1 year ago)
- Last Synced: 2024-08-03T10:01:32.988Z (4 months ago)
- Topics: boosting, catboost, decision-trees, lightgbm, machine-learning, random-forest, tabular-data, xgboost
- Language: Jupyter Notebook
- Homepage:
- Size: 26.4 MB
- Stars: 231
- Watchers: 16
- Forks: 91
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-studio-lab-jp - 決定木
README
![logo](data/MLU_Logo.png)
## Machine Learning University: Decision Trees and Ensemble Methods ClassThis repository contains __slides__, __notebooks__, and __datasets__ for the __Machine Learning University (MLU) Decision Trees and Ensemble Methods__ class. Our mission is to make Machine Learning accessible to everyone. We have courses available across many topics of machine learning and believe knowledge of ML can be a key enabler for success. This class is designed to help you get started with tree based models, learn about widely used Machine Learning techniques and apply them to real-world problems.
## YouTube
Watch all class video recordings in this [YouTube playlist](https://www.youtube.com/playlist?list=PL8P_Z6C4GcuXrj9crYtU_XaYh3Jac4x0p) from our [YouTube channel](https://www.youtube.com/channel/UC12LqyqTQYbXatYS9AA7Nuw/playlists).[![Playlist](https://img.youtube.com/vi/DtX1hN0FRfk/0.jpg)](https://www.youtube.com/playlist?list=PL8P_Z6C4GcuXrj9crYtU_XaYh3Jac4x0p)
## Course Overview
There are five lectures, one final project and five assignments for this class.Lecture 1
| title | studio lab |
| :---: | ---: |
| Decision Trees | - |
| Impurity Functions | - |
| CART Algorithm | - |
| Regularization | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_1/DTE-LECTURE-1-PRUNE.ipynb)|Lecture 2
| title | studio lab |
| :---: | ---: |
| Bias-variance trade-off | - |
| Error Decomposition | - |
| Extra Trees Algorithm | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_2/DTE-LECTURE-2-TREE-VARIANCE.ipynb)|
| Bias-variance and Randomized Ensembles | - |Lecture 3
| title | studio lab |
| :---: | ---: |
| Boostrapping | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_3/DTE-LECTURE-3-BOOTSTRAP.ipynb)|
| Bagging |Bagging [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_3/DTE-LECTURE-3-BAGGING-OVERFIT.ipynb)
tree correlation [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_3/DTE-LECTURE-3-TREE-CORRELATION.ipynb)|
| Random Forests | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_3/DTE-LECTURE-3-RANDOM-FOREST.ipynb)|Lecture 4
| title | studio lab |
| :---: | ---: |
| Random Forest Proximities | - |
| Some use cases for Proximities | - |
| Feature Importance in Trees | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_4/DTE-LECTURE-4-PERMUTATION-FEATURE-IMP.ipynb)|
| Feature Importance in Random Forests |[![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_4/DTE-LECTURE-4-FEATURE-IMPORTANCE.ipynb) |Lecture 5
| title | studio lab |
| :---: | ---: |
| Boosting | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_5/DTE-LECTURE-5-BOOSTING.ipynb)|
| Gradient Boosting | - |
| XGBoost, LightGBM and CatBoost | CatBoost [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_5/DTE-LECTURE-5-CATBOOST.ipynb)
LightGBM [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_5/DTE-LECTURE-5-LIGHTGBM.ipynb)|Final Project
| title | studio lab |
| :---: | ---: |
| Final Project | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/final_project/DTE-FINAL-PROJECT.ipynb)|__Final Project:__ Practice working with a "real-world" computer vision dataset for the final project. Final project dataset is in the [data/final_project folder](https://github.com/aws-samples/aws-machine-learning-university-dte/tree/main/data/final_project). For more details on the final project, check out [this notebook](https://github.com/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/final_project/DTE-FINAL-PROJECT.ipynb).
## Interactives/Visuals
Interested in visual, interactive explanations of core machine learning concepts? Check out our [MLU-Explain articles](https://mlu-explain.github.io/) to learn at your own pace!Including relevant articles for this course: [Decision Trees](https://mlu-explain.github.io/decision-tree/), [Random Forest](https://mlu-explain.github.io/random-forest/), and the [Bias Variance Tradeoff](https://mlu-explain.github.io/bias-variance/).
## Contribute
If you would like to contribute to the project, see [CONTRIBUTING](CONTRIBUTING.md) for more information.## License
The license for this repository depends on the section. Data set for the course is being provided to you by permission of Amazon and is subject to the terms of the [Amazon License and Access](https://www.amazon.com/gp/help/customer/display.html?nodeId=201909000). You are expressly prohibited from copying, modifying, selling, exporting or using this data set in any way other than for the purpose of completing this course. The lecture slides are released under the CC-BY-SA-4.0 License. The code examples are released under the MIT-0 License. See each section's LICENSE file for details.