https://github.com/axsk/optimpsampling.jl
Optimal Importance Sampling for Diffusion processes applied to ISOKANN.
https://github.com/axsk/optimpsampling.jl
importance-sampling isokann machine-learning optimal-control reinforce scrapbook zib
Last synced: 7 months ago
JSON representation
Optimal Importance Sampling for Diffusion processes applied to ISOKANN.
- Host: GitHub
- URL: https://github.com/axsk/optimpsampling.jl
- Owner: axsk
- Created: 2022-02-24T14:03:54.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2023-01-05T11:12:34.000Z (almost 3 years ago)
- Last Synced: 2024-03-24T06:10:17.129Z (over 1 year ago)
- Topics: importance-sampling, isokann, machine-learning, optimal-control, reinforce, scrapbook, zib
- Language: Julia
- Homepage:
- Size: 1.23 MB
- Stars: 0
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# OptImpSampling.jl
A WIP collection of algorithms related to optimal importance sampling (OIS).
With a focus on ISOKANN:
- [ociso](src/ociso.jl): OIS for Koopman eigen- and chi functions
- [isokann](src/isokann.jl): ISOKANN using OIS for the chi approximations- [control](src/control.jl): simpler rewrite of ociso
- [isonew](src/isonew.jl): rewrite of isokann, uses humboldtsampling- [isokann2](src/isokann2.jl): sketch of ISOKANN in higher dimensions
Utils:
- [sqra](src/sqra.jl): Square root approximation for the generators of Ito diffusions (copy from Sqra.jl)
- [humboldtsample](src/humboldtsample.jl): sample uniform along the reaction coordinateExperimental implementations:
- [logvar](src/logvar.jl): OIS of path functionals with control variates (implements Richter, Nusken 2021)
- [reinforce](src/reinforce.jl): OIS of functions via REINFORCE
- [reinforcepath](src/reinforcepath.jl): like reinfore but on path space (equivalent to logvar)
- [fbsde](src/fbsde.jl): Forward backward SDE with Neural Controls, learning all times at once (like Kebiri, Hartmann 2019)