Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ayoolaolafenwa/chatlm

The github repository of ChatLM.
https://github.com/ayoolaolafenwa/chatlm

artificial-intelligence chat chatgpt gpt largelanguagemodel llm machine-learning natural-language-processing nlp

Last synced: 12 days ago
JSON representation

The github repository of ChatLM.

Awesome Lists containing this project

README

        

## ChatLM
It is a chat Large Language Model finetuned with pretrained [Falcon-1B model](https://huggingface.co/tiiuae/falcon-rw-1b)
and trained on [chat-bot-instructions prompts dataset](https://huggingface.co/datasets/ayoolaolafenwa/sft-data).
ChatLM was trained on a dataset containing normal day to day human conversations, due to limited data used in training
it does not generalize well for tasks like coding, current affairs and hallucinations may occur.

# Have a live chat with ChatLM on Huggingface space https://huggingface.co/spaces/ayoolaolafenwa/ChatLM
### Install Required Packages
```
pip install transformers
pip install accelerate
pip install einops
pip install bitsandbytes
```

## Load Model in bfloat16
``` python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "ayoolaolafenwa/ChatLM"

tokenizer = AutoTokenizer.from_pretrained(model_path)

model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code = True,
torch_dtype=torch.bfloat16).to("cuda")

prompt = ": Give me a financial advise on investing in stocks. : "

tokens = tokenizer(prompt, return_tensors="pt")

token_ids = tokens.input_ids
attention_mask=tokens.attention_mask

token_ids = token_ids.to(model.device)
attention_mask=attention_mask.to(model.device)

outputs = model.generate(input_ids=token_ids, attention_mask = attention_mask, max_length=2048,do_sample=True,
num_return_sequences=1,top_k = 10, temperature = 0.7, eos_token_id=tokenizer.eos_token_id)

output_text = tokenizer.decode(outputs[0])
output_text = output_text.replace("<|endoftext|>", "")

print(output_text)
```

## Load Model in bfloat16 and int8
``` python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "ayoolaolafenwa/ChatLM"

tokenizer = AutoTokenizer.from_pretrained(model_path)

model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code = True,
torch_dtype=torch.bfloat16, load_in_8bit=True)

prompt = ": Give me a financial advise on investing in stocks. : "

tokens = tokenizer(prompt, return_tensors="pt")

token_ids = tokens.input_ids
attention_mask=tokens.attention_mask

token_ids = token_ids.to(model.device)
attention_mask=attention_mask.to(model.device)

outputs = model.generate(input_ids=token_ids, attention_mask = attention_mask, max_length=2048,do_sample=True,
num_return_sequences=1,top_k = 10, temperature = 0.7, eos_token_id=tokenizer.eos_token_id)

output_text = tokenizer.decode(outputs[0])
output_text = output_text.replace("<|endoftext|>", "")

print(output_text)
```
# Training procedure for Supervised Finetuning

## Dataset Preparation

Chatbot Instructions prompts dataset from https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts/viewer/alespalla--chatbot_instruction_prompts
was processed into a supervised finetuning format for training a user prompt and a corresponding response.

##### Download Data
``` python
from datasets import load_dataset

dataset = load_dataset("alespalla/chatbot_instruction_prompts", split = "train")
dataset.save_to_disk('ChatBotInsP')
dataset.to_csv('CIPtrain.csv')
```

##### Code to process dataset into Supervised finetuning format
``` python
# Import pandas library
import pandas as pd

# Read the text dataset from csv file
text_data = pd.read_csv("CIPtrain.csv")

# Create empty lists for prompts and responses
prompts = []
responses = []

# Loop through the text data
for i in range(len(text_data)):
# Get the sender, message, and timestamp of the current row
prompt = text_data["prompt"][i]
prompt = str(prompt)

response = text_data["response"][i]
response = str(response)

# Add the message to the prompts list with tag
prompts.append(": " + prompt)

# Add the message to the responses list with tag
responses.append(": " + response)

# Create a new dataframe with prompts and responses columns
new_data = pd.DataFrame({"prompt": prompts, "response": responses})

#alespalla/chatbot_instruction_prompts
# Write the new dataframe to a csv file
new_data.to_csv("MyData/chatbot_instruction_prompts_train.csv", index=False)
```
The users` prompts in the dataset are appended with the tag and the corresponding responses with the tag .
Check the the modified dataset https://huggingface.co/datasets/ayoolaolafenwa/sft-data .

### Training

ChatLM was supervised finetuned with pretrained [Falcon 1-Billion parameters model](https://huggingface.co/tiiuae/falcon-rw-1b) trained on 350-Billion tokens
of RefinedWeb. It was trained with a single H100 GPU for 1 epoch. It achieves Perplexity *1.738*.

Check the full code for Supervised Finetune training [here](https://github.com/ayoolaolafenwa/ChatLM/blob/main/trainSFT.py).
Check the training config [here](https://github.com/ayoolaolafenwa/ChatLM/blob/main/trainConf.conf)

### Run Training with accelerate
```
accelerate launch --config_file trainConf.conf trainSFT.py
```