An open API service indexing awesome lists of open source software.

https://github.com/aysenurcftc/credit_score-classification


https://github.com/aysenurcftc/credit_score-classification

classification credit-scoring csv finance logistic-regression neural-network nn scikit-learn

Last synced: 14 days ago
JSON representation

Awesome Lists containing this project

README

          

# Credit Score Classification

The credit score classification was performed using five different datasets.

## Installation

```bash
pip install -r requirements.txt
```

## Usage/Examples

```
usage: main.py [-h] [--run_mode RUN_MODE] [--dataset DATASET] [--model_type MODEL_TYPE] [--imputing_type_numerical IMPUTING_TYPE_NUMERICAL]
[--imputing_type_categorical IMPUTING_TYPE_CATEGORICAL] [--split_ratio SPLIT_RATIO] [--filepath FILEPATH]

Train a model on a specified dataset.

options:
-h, --help show this help message and exit
--run_mode RUN_MODE Mode to run the script in, e.g., training or testing
--dataset DATASET Dataset to use for training
--model_type MODEL_TYPE
Type of model to use, e.g., 'logistic regression' or 'NN'
--imputing_type_numerical IMPUTING_TYPE_NUMERICAL
Imputing strategy for numerical features
--imputing_type_categorical IMPUTING_TYPE_CATEGORICAL
Imputing strategy for categorical features
--split_ratio SPLIT_RATIO
Train-test split ratio
--filepath FILEPATH Path to the dataset file
None
usage: main.py [-h] [--run_mode RUN_MODE] [--dataset DATASET] [--model_type MODEL_TYPE] [--imputing_type_numerical IMPUTING_TYPE_NUMERICAL]
[--imputing_type_categorical IMPUTING_TYPE_CATEGORICAL] [--split_ratio SPLIT_RATIO] [--filepath FILEPATH]

Train a model on a specified dataset.

options:
-h, --help show this help message and exit
--run_mode RUN_MODE Mode to run the script in, e.g., training or testing
--dataset DATASET Dataset to use for training
--model_type MODEL_TYPE
Type of model to use, e.g., 'logistic regression' or 'NN'
--imputing_type_numerical IMPUTING_TYPE_NUMERICAL
Imputing strategy for numerical features
--imputing_type_categorical IMPUTING_TYPE_CATEGORICAL
Imputing strategy for categorical features
--split_ratio SPLIT_RATIO
Train-test split ratio
--filepath FILEPATH Path to the dataset file

```

## Deployment

To deploy this project run

```bash
docker build -t ml_proje .
docker run ml_proje --run_mode training --dataset statlog_german_credit_data --model_type NN --imputing_type_numerical median --imputing_type_categorical mode --split_ratio 0.7 --filepath data/statlog_german_credit_data.csv

```