An open API service indexing awesome lists of open source software.

https://github.com/ayvero/java_backtracking_number-pyramid

The objective of this exercise is to place a positive integer (less than a given value k) in each cell of a pyramid with a given base B. Each number must be equal to the sum of the numbers in the cells it is supported by, and all numbers must be unique.
https://github.com/ayvero/java_backtracking_number-pyramid

backtracking-algorithm java

Last synced: 9 months ago
JSON representation

The objective of this exercise is to place a positive integer (less than a given value k) in each cell of a pyramid with a given base B. Each number must be equal to the sum of the numbers in the cells it is supported by, and all numbers must be unique.

Awesome Lists containing this project

README

          

## Descripción del Problema
El objetivo de este ejercicio es colocar un número entero positivo (menor que un valor dado k) en cada casilla de una pirámide con base B. Cada número debe ser igual a la suma de los números en las casillas sobre las que se apoya, y todos los números deben ser diferentes.

## Enfoque
- **Colocación Combinatoria**: El algoritmo garantiza que cada número cumpla con la condición de suma, manteniendo la unicidad.
- **Manejo de Estructuras Jerárquicas**: La solución optimiza la distribución de números en una estructura piramidal, requiriendo validación rigurosa de restricciones.

## Aplicaciones
Este problema es útil en la optimización jerárquica, planificación de recursos y diseño de algoritmos para estructuras de datos no lineales complejas.

----------------------------------------------------

## Problem Description
The objective of this exercise is to place a positive integer (less than a given value k) in each cell of a pyramid with a given base B. Each number must be equal to the sum of the numbers in the cells it is supported by, and all numbers must be unique.

## Approach
- **Combinatorial Placement**: The algorithm ensures that each number satisfies the summation condition while maintaining uniqueness.
- **Hierarchical Structure Handling**: The solution optimizes number distribution in a pyramid-like structure, requiring careful validation of constraints.

## Applications
This problem is relevant for hierarchical optimization, resource planning, and algorithm design for complex non-linear data structures.