https://github.com/baaivision/uni3d
[ICLR'24 Spotlight] Uni3D: 3D Visual Representation from BAAI
https://github.com/baaivision/uni3d
3d-representation-learning foundation-models vision-transformers
Last synced: 6 months ago
JSON representation
[ICLR'24 Spotlight] Uni3D: 3D Visual Representation from BAAI
- Host: GitHub
- URL: https://github.com/baaivision/uni3d
- Owner: baaivision
- License: mit
- Created: 2023-10-10T15:15:28.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2024-01-17T06:37:34.000Z (over 1 year ago)
- Last Synced: 2025-03-28T23:04:54.186Z (7 months ago)
- Topics: 3d-representation-learning, foundation-models, vision-transformers
- Language: Python
- Homepage:
- Size: 6.05 MB
- Stars: 542
- Watchers: 16
- Forks: 34
- Open Issues: 23
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Uni3D: Exploring Unified 3D Representation at Scale
[Junsheng Zhou](https://junshengzhou.github.io/)1,2*, [Jinsheng Wang](https://github.com/Wolfwjs/)1*, [Baorui Ma](https://mabaorui.github.io/)1*, [Yu-Shen Liu](https://yushen-liu.github.io/)2, [Tiejun Huang](https://scholar.google.com/citations?user=knvEK4AAAAAJ&hl=en)1,3, [Xinlong Wang](https://www.xloong.wang/)1
1[BAAI](https://www.baai.ac.cn/english.html), 2[THU](https://www.tsinghua.edu.cn/en/), 3[PKU](https://english.pku.edu.cn/)
* Equal Contribution
ICLR 2024 (Spotlight)[](https://paperswithcode.com/sota/zero-shot-3d-classification-on-objaverse-lvis?p=uni3d-exploring-unified-3d-representation-at)
[](https://paperswithcode.com/sota/zero-shot-transfer-3d-point-cloud?p=uni3d-exploring-unified-3d-representation-at)
[](https://paperswithcode.com/sota/zero-shot-transfer-3d-point-cloud-2?p=uni3d-exploring-unified-3d-representation-at)
![]()
We present Uni3D, a unified and scalable 3D pretraining framework for large-scale 3D representation learning, and explore its limits at the scale of one billion parameters.
Uni3D uses a 2D initialized ViT end-to-end pretrained to align the 3D point cloud features with the image-text aligned features. Via the simple architecture and pretext task, Uni3D can leverage abundant 2D pretrained models as initialization and image-text aligned models as the target, unlocking the great potential of 2D models and scaling-up strategies to the 3D world. We efficiently scale up Uni3D to one billion parameters, and set new records on a broad range of 3D tasks.## Schedule
We are committed to open-sourcing Uni3D related materials, including:
- [x] Extended Uni3D to a 3D metric (Uni3D-score) for enhanced semantic coherence in text-to-3D tasks. For details, see [GeoDream](https://github.com/baaivision/GeoDream).
- [x] The weights of models range from 6M to **1B** parameters.
- [x] Evaluation code
- [x] Evaluation data
- [x] Pretraining code
- [ ] Pretraining dataWe hope to foster the growth of our community through open-sourcing and promoting collaboration👬. Let's step towards multimodal intelligence together🍻.
## Installation
Clone this repository and install the required packages:```shell
git clone https://github.com/baaivision/Uni3D.git
cd Uni3Dconda create -n uni3d python=3.8
conda activate uni3d
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidiapip install -r requirements.txt
# install pointnet2 extensions from https://github.com/erikwijmans/Pointnet2_PyTorch
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"```
Core packages:
- [Pytorch](https://pytorch.org/) version 2.0.1
- [open-clip-torch](https://github.com/mlfoundations/open_clip) version 2.20.0
- [timm](https://github.com/rwightman/pytorch-image-models) version 0.9.7
- [DeepSpeed](https://github.com/microsoft/DeepSpeed) version 0.10.3
- [Open3D](https://github.com/isl-org/Open3D) version 0.17.0## Model Zoo
| Model | Training Data | Objaverse-LVIS Top1 (Top5) | ModelNet40 Top1 (Top5) | ScanObjectNN Top1 (Top5) |
| :------: | :------: | :------: |:------: |:------: |
| [**Uni3d-B**](https://huggingface.co/BAAI/Uni3D/blob/main/modelzoo/uni3d-b-no-lvis/model.pt) | Ensembled w/o LVIS | 45.9 (74.8) | 86.1 (98.7) | 61.7 (89.5) |
| [**Uni3d-B**](https://huggingface.co/BAAI/Uni3D/blob/main/modelzoo/uni3d-b/model.pt) | Ensembled | 51.7 (80.8) | 86.3 (97.9) | 63.8 (90.2) |
| [**Uni3d-L**](https://huggingface.co/BAAI/Uni3D/blob/main/modelzoo/uni3d-l-no-lvis/model.pt) | Ensembled w/o LVIS | 46.2 (74.7) | 86.6 (97.8) | 58.4 (90.1) |
| [**Uni3d-L**](https://huggingface.co/BAAI/Uni3D/blob/main/modelzoo/uni3d-l/model.pt) | Ensembled | 53.1 (81.5) | 86.3 (98.3) | 58.2 (89.4) |
| [**Uni3d-g**](https://huggingface.co/BAAI/Uni3D/blob/main/modelzoo/uni3d-g-no-lvis/model.pt) | Ensembled w/o LVIS | 47.2 (76.1) | 86.8 (98.4) | 66.5 (90.1) |
| [**Uni3d-g**](https://huggingface.co/BAAI/Uni3D/blob/main/modelzoo/uni3d-g/model.pt) | Ensembled | 53.5 (82.0) | 87.3 (99.2) | 63.9 (91.7) |
| [**Uni3d-g**](https://huggingface.co/BAAI/Uni3D/tree/main/modelzoo/uni3d-g) 🔥 | Ensembled | 55.3 (82.9) | 88.2 (99.3) | 65.3 (92.7) |## Evaluation of Zero-shot 3D classification
We evaluate the zero-shot 3D classification performance on three datasets: Objaverse-LVIS, ModelNet40 and ScanObjectNN.1. Please refer to [DATASETS.md](data/DATASETS.md) for evaluation dataset preparation.
2. [Recommended 🤗] Download the [clip model](https://huggingface.co/timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k/blob/main/open_clip_pytorch_model.bin) and put it in `/path/to/clip_model` folder.
3. Download model zoo weights and put them in `/path/to/checkpoints` folder.
4. Run `bash scripts/inference.sh [scale]` to evaluate the model on the above datasets, e.g., `bash scripts/inference.sh giant`.## Pre-training
1. Please refer to [DATASETS.md](data/DATASETS.md) for pre-train dataset preparation.
2. [Recommended 🤗] Download the [clip model](https://huggingface.co/timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k/blob/main/open_clip_pytorch_model.bin) and put it in `/path/to/clip_model` folder.
3. [Recommended 🤗] Download the [initialization model](https://huggingface.co/timm/eva_giant_patch14_560.m30m_ft_in22k_in1k/blob/main/model.safetensors) and put it in `/path/to/init_model` folder.
4. Run `bash scripts/pretrain.sh` to pre-train the model on ensemble datasets.## Visualization
### Open-world Understanding
![]()
### One-shot Part Segmentation
![]()
### Point Cloud Painting
![]()
### Cross-modal Retrieval
![]()
![]()
## Acknowledgement
Uni3D is built using the awesome [EVA](https://github.com/baaivision/EVA), [OpenCLIP](https://github.com/mlfoundations/open_clip), [timm](https://github.com/huggingface/pytorch-image-models/), [DeepSpeed](https://github.com/microsoft/DeepSpeed), [ULIP](https://github.com/salesforce/ULIP) and [OpenShape](https://github.com/Colin97/OpenShape_code).## Citation
```bib
@inproceedings{zhou2023uni3d,
title={Uni3d: Exploring unified 3d representation at scale},
author={Zhou, Junsheng and Wang, Jinsheng and Ma, Baorui and Liu, Yu-Shen and Huang, Tiejun and Wang, Xinlong},
booktitle={International Conference on Learning Representations (ICLR)},
year={2024}
}
```