Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/baderlab/apa-net
https://github.com/baderlab/apa-net
Last synced: about 5 hours ago
JSON representation
- Host: GitHub
- URL: https://github.com/baderlab/apa-net
- Owner: BaderLab
- License: mit
- Created: 2024-01-02T21:33:53.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2024-11-14T19:56:39.000Z (about 1 month ago)
- Last Synced: 2024-11-14T20:35:21.319Z (about 1 month ago)
- Language: Python
- Size: 8.79 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# APA-Net
APA-Net is a deep learning model designed for learning context specific APA usage. This guide covers the steps necessary to set up and run APA-Net.
## Installation
Before running APA-Net, ensure you have Python installed on your system. Clone this repository to your local machine:
```bash
git clone https://github.com/BaderLab/APA-Net.git
cd APA-Netpip install .
```
# Usage
To train the APA-Net model, use the train_script.py script with the necessary command-line arguments:
```bash
python train_script.py \
--train_data "/path/to/train_data.npy" \
--train_seq "/path/to/train_seq.npy" \
--valid_data "/path/to/valid_data.npy" \
--valid_seq "/path/to/valid_seq.npy" \
--profiles "/path/to/celltype_profiles.tsv" \
--modelfile "/path/to/model_output.pt" \
--batch_size 64 \
--epochs 200 \
--project_name "APA-Net_Training" \
--device "cuda:1" \
--use_wandb "True"
```# Arguments
- `--train_data`: Path to the training data file.
- `--train_seq`: Path to the training sequence data file.
- `--valid_data`: Path to the validation data file.
- `--valid_seq`: Path to the validation sequence data file.
- `--profiles`: Path to the cell type profiles file.
- `--modelfile`: Path where the trained model will be saved.
- `--batch_size`: Batch size for training (default: 64).
- `--epochs`: Number of training epochs (default: 200).
- `--project_name`: Name of the project for wandb logging.
- `--device`: Device to run the training on (e.g., 'cuda:1').
- `--use_wandb`: Flag to enable or disable wandb logging ('True' or 'False').