https://github.com/bailool/anms-codes
  
  
    Efficient adaptive non-maximal suppression algorithms for homogeneous spatial keypoint distribution 
    https://github.com/bailool/anms-codes
  
adaptive-non-maximal-suppression algorithm algorithm-overview anms cmake computer-vision cpp11 java matlab maximal-suppression-algorithms nms non-maximum-suppression opencv paper point-detection python qt robotics slam spatial-keypoints-distribution
        Last synced: 7 months ago 
        JSON representation
    
Efficient adaptive non-maximal suppression algorithms for homogeneous spatial keypoint distribution
- Host: GitHub
- URL: https://github.com/bailool/anms-codes
- Owner: BAILOOL
- License: mit
- Created: 2017-02-21T03:41:52.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2022-01-30T21:05:05.000Z (over 3 years ago)
- Last Synced: 2025-04-06T07:15:09.916Z (7 months ago)
- Topics: adaptive-non-maximal-suppression, algorithm, algorithm-overview, anms, cmake, computer-vision, cpp11, java, matlab, maximal-suppression-algorithms, nms, non-maximum-suppression, opencv, paper, point-detection, python, qt, robotics, slam, spatial-keypoints-distribution
- Language: C++
- Homepage: https://www.researchgate.net/publication/323388062_Efficient_adaptive_non-maximal_suppression_algorithms_for_homogeneous_spatial_keypoint_distribution
- Size: 6.04 MB
- Stars: 340
- Watchers: 13
- Forks: 71
- Open Issues: 0
- 
            Metadata Files:
            - Readme: README.md
- Contributing: docs/contributing.rst
- License: LICENSE
 
Awesome Lists containing this project
README
          # Efficient adaptive non-maximal suppression algorithms for homogeneous spatial keypoint distribution
This is the implementation of the [paper](https://www.researchgate.net/publication/323388062_Efficient_adaptive_non-maximal_suppression_algorithms_for_homogeneous_spatial_keypoint_distribution) *"Efficient adaptive non-maximal suppression algorithms for homogeneous spatial keypoint distribution"* that is published in Pattern Recognition Letters (PRL). Alternatively, see [TL;DR version](https://www.shortscience.org/paper?bibtexKey=journals/prl/BailoRJPBK18&a=ukrdailo).

While competing ANMS methods have similar performance in terms of spatial keypoints distribution, the proposed method SSC is substantially faster and scales better:
|  |  |  |
|:----:|:---:|:---:|
Here is how proposed ANMS method visually compares to traditional methods: TopM | Bucketing | SSC (proposed)
|  |  |  |
|:---:|:---:|:---:|
Related algorithms that are implemented in this repository are:
- *"Visual Odometry based on Stereo Image Sequences with RANSAC-based Outlier Rejection Scheme"* - bucketing
- *"Multi-Image Matching using Multi-Scale Oriented Patches"* - original ANMS
- *"Efficiently selecting spatially distributed keypoints for visual tracking"* - more efficient ANMS
For more details about the algorithm, experiments as well as the importance of homogeneously distributed keypoints for SLAM please refer to the [paper](https://www.researchgate.net/publication/323388062_Efficient_adaptive_non-maximal_suppression_algorithms_for_homogeneous_spatial_keypoint_distribution).
## How to run
1. Clone this repository: `git clone https://github.com/BAILOOL/ANMS-Codes.git`. See [codebase visualization](https://octo-repo-visualization.vercel.app/?repo=BAILOOL%2FANMS-Codes) to better understand code repository structure.
2. Choose your language:
    - [C++](https://github.com/BAILOOL/ANMS-Codes/tree/master/C++)
    - [Python](https://github.com/BAILOOL/ANMS-Codes/tree/master/Python)
    - [Matlab](https://github.com/BAILOOL/ANMS-Codes/tree/master/Matlab) [](https://uk.mathworks.com/matlabcentral/fileexchange/88723-anms-codes)
    - [Java](https://github.com/BAILOOL/ANMS-Codes/tree/master/Java)
3. Make sure the [path to test image](C++/CmakeProject/main.cpp#L8) is set correctly
4. Run produced executable `./ANMS_Codes` for C++ or relevant script for other languages
Codes have been tested with `OpenCV 2.4.8`, `OpenCV 3.3.1`, `OpenCV 4.2.0` and `Ubuntu 14.04`, `16.04`, `20.04`.
## Contributing
Follow instructions in [docs/contributing](https://github.com/BAILOOL/ANMS-Codes/blob/master/docs/contributing.rst).
## Citation
If you use these codes in your research, please cite:
```text
@article{bailo2018efficient,
  title={Efficient adaptive non-maximal suppression algorithms for homogeneous spatial keypoint distribution},
  author={Bailo, Oleksandr and Rameau, Francois and Joo, Kyungdon and Park, Jinsun and Bogdan, Oleksandr and Kweon, In So},
  journal={Pattern Recognition Letters},
  volume={106},
  pages={53--60},
  year={2018},
  publisher={Elsevier}
}
```