An open API service indexing awesome lists of open source software.

https://github.com/barakmich/bbqvec

Scalable Embedded Vector Index for Go and Rust
https://github.com/barakmich/bbqvec

aknn ann golang knn rust similarity-search vector vector-database vector-search

Last synced: 4 months ago
JSON representation

Scalable Embedded Vector Index for Go and Rust

Awesome Lists containing this project

README

          

![BBQvec Logo](.github/bbqvec.png)

![Status](https://img.shields.io/badge/status-beta-blue)
[![license](https://img.shields.io/github/license/barakmich/bbqvec)](LICENSE)
[![GoDoc](https://godoc.org/github.com/barakmich/bbqvec?status.svg)](https://godoc.org/github.com/barakmich/bbqvec)
[![Crates.io](https://img.shields.io/crates/v/bbqvec)](https://crates.io/crates/bbqvec)
[![Go CI](https://github.com/barakmich/bbqvec/actions/workflows/go.yml/badge.svg)](https://github.com/barakmich/bbqvec/actions/workflows/go.yml)
[![Rust CI](https://github.com/barakmich/bbqvec/actions/workflows/rust.yml/badge.svg)](https://github.com/barakmich/bbqvec/actions/workflows/rust.yml)

BBQvec is an open-source, embedded vector database index for Go and Rust, providing approximate K-nearest-neighbors (aKNN).

# Getting Started

## Go

```go
package main

import (
"fmt"

bbq "github.com/barakmich/bbqvec"
)

func main() {
// Declare store parameters
dimensions := 200
nBasis := 10

// Initialize the store
backend := bbq.NewMemoryBackend(dimensions)
datastore, _ := bbq.NewVectorStore(backend, nBasis)

// Create some test data, 100K random vectors
vecs := bbq.NewRandVectorSet(100_000, dimensions, nil)
datastore.AddVectorsWithOffset(0, vecs)
/*
Equivalent to:
for i, v := range vecs {
datastore.AddVector(bbq.ID(i), v)
}
*/

// Run a query
targetVec := bbq.NewRandVector(dimensions, nil)
results, _ := datastore.FindNearest(targetVec, 10, 1000, 1)

// Inspect the results
top := results.ToSlice()[0]
vec, _ := backend.GetVector(top.ID)
fmt.Println(top.ID, vec, top.Similarity)
}
```

## Rust

```rust
use bbqvec::IndexIDIterator;

fn main() -> Result<()> {
// Declare store parameters
let dimensions = 200;
let n_basis = 10;

// Initialize the store
let mem = bbqvec::MemoryBackend::new(dimensions, n_basis)?;
let mut store = bbqvec::VectorStore::new(mem)?;

// Create some test data, 100K random vectors
let vecs = bbqvec::create_vector_set(dimensions, 100000);
store.add_vector_iter(vecs.enumerate_ids())?;

// Run a query
let target = bbqvec::create_random_vector(dimensions);
let results = store.find_nearest(&target, 10, 1000, 1)?;

// Inspect the results
for res in results.iter_results() {
println!("{} {}", res.id, res.similarity)
}
}

```

# TODOs

We're still early; Go is the more tried-and-true and suits the beta use-case, but Rust is a good deal faster. We welcome contributions.

## Go
- [ ] More benchmarks
- [ ] New Quantizations
- [ ] Hamming Distance (single-bit vectors)
- [ ] Novel quantizations
## Rust
- [ ] Finish disk backend to match Go (in progress, shortly)
- [ ] New Quantizations

### Acknowledgements
Thank you to MariaLetta for the [free-gophers-pack](https://github.com/MariaLetta/free-gophers-pack) and to [rustacean.net](https://rustacean.net) for the CC0 logo characters.