Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/barrust/bloom
Bloom filter implementation
https://github.com/barrust/bloom
bloom-filter c data-structures filter probabilistic
Last synced: 25 days ago
JSON representation
Bloom filter implementation
- Host: GitHub
- URL: https://github.com/barrust/bloom
- Owner: barrust
- License: mit
- Created: 2015-08-13T21:33:43.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2023-02-12T13:15:05.000Z (almost 2 years ago)
- Last Synced: 2024-02-17T06:35:03.051Z (9 months ago)
- Topics: bloom-filter, c, data-structures, filter, probabilistic
- Language: C
- Size: 126 KB
- Stars: 30
- Watchers: 4
- Forks: 9
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# bloom
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![GitHub release](https://img.shields.io/github/v/release/barrust/bloom.svg)](https://github.com/barrust/bloom/releases)
[![C/C++ CI](https://github.com/barrust/bloom/actions/workflows/ci.yml/badge.svg?branch=master)](https://github.com/barrust/bloom/actions/workflows/ci.yml)
[![codecov](https://codecov.io/gh/barrust/bloom/branch/master/graph/badge.svg)](https://codecov.io/gh/barrust/bloom)Bloom Filter implementation written in **C**
Bloom Filters are a probabilistic data structure that allows for the storage and
look up of elements. The data stored in a Bloom Filter is not retrievable. Once
data is 'inserted', data can be checked to see if it likely has been seen or if
it definitely has not. Bloom Filters guarantee a 0% False Negative rate with a
pre-selected false positive rate.To use the library, copy the `src/bloom.h` and `src/bloom.c` files into your
project and include it where needed.## License:
MIT 2015 - 2021## Main Features:
* Set upper bound number of elements and desired false positive rate; the system
will determine number of hashes and number of bits required
* Custom hashing algorithms support
* Import and export either as file or as hex string
* Keeps everything but the hashing algorithm
* Hex can be used if needing to store as a string
* File base can be loaded either on disk or into memory
* Ability to read Bloom Filter on disk instead of in memory if needed
* Add or check for presence in the filter by using either the string or hashes
* Using hashes can be used to check many similar Bloom Filters while only
needing to hash the string once
* Calculate current false positive rate
* Union and Intersection of Bloom Filters
* Calculate the Jaccard Index between two Bloom Filters
* **OpenMP** support for generation and lookup
* Ensure the `bloom.c` file is compiled with `-fopenmp` along with the utilizing program## Future Enhancements
* What would the difference between two Bloom Filters signify?## Usage:
``` c
#include "bloom.h"BloomFilter bf;
/* elements = 10;
false positive rate = 5% */
bloom_filter_init(&bf, 10, 0.05);
bloom_filter_add_string(&bf, "test");
if (bloom_filter_check_string(&bf, "test") == BLOOM_FAILURE) {
printf("'test' is not in the Bloom Filter\n");
} else {
printf("'test' is in the Bloom Filter\n");
}
if (bloom_filter_check_string(&bf, "blah") == BLOOM_FAILURE) {
printf("'blah' is not in the Bloom Filter!\n");
} else {
printf("'blah' is in th Bloom Filter\n");
}
bloom_filter_stats(&bf);
bloom_filter_destroy(&bf);
```### User Defined Hash Function Example
``` c
#include
#include
#include
#include
#include "bloom.h"/* Example of a custom hashing function */
uint64_t* sha256_hash(int num_hashes, char* str) {
uint64_t* results = calloc(num_hashes, sizeof(uint64_t));
unsigned char digest[SHA256_DIGEST_LENGTH];
int i;
for (i = 0; i < num_hashes; i++) {
SHA256_CTX sha256_ctx;
SHA256_Init(&sha256_ctx);
if (i == 0) {
SHA256_Update(&sha256_ctx, str, strlen(str));
} else {
SHA256_Update(&sha256_ctx, digest, SHA256_DIGEST_LENGTH);
}
SHA256_Final(digest, &sha256_ctx);
results[i] = (uint64_t)* (uint64_t* )digest;
}
return results;
}BloomFilter bf;
/* elements = 10;
false positive rate = 5%
custom hashing algorithm = sha256_hash function */
bloom_filter_init_alt(&bf, 10, 0.05, &sha256_hash);
bloom_filter_add_string(&bf, "test");
if (bloom_filter_check_string(&bf, "test") == BLOOM_FAILURE) {
printf("'test' is not in the Bloom Filter\n");
} else {
printf("'test' is in the Bloom Filter\n");
}
if (bloom_filter_check_string(&bf, "blah") == BLOOM_FAILURE) {
printf("'blah' is not in the Bloom Filter!\n");
} else {
printf("'blah' is in th Bloom Filter\n");
}
bloom_filter_stats(&bf);
bloom_filter_destroy(&bf);
```## Required Compile Flags:
-lm## Backward Compatible Hash Function
To use the older bloom filters (v1.8.2 or lower) that utilized the default hashing
algorithm, then change use the following code as the hash function:``` c
/* NOTE: The caller will free the results */
static uint64_t* original_default_hash(unsigned int num_hashes, const char* str) {
uint64_t *results = (uint64_t*)calloc(num_hashes, sizeof(uint64_t));
char key[17] = {0}; // largest value is 7FFF,FFFF,FFFF,FFFF
results[0] = __fnv_1a(str);
for (unsigned int i = 1; i < num_hashes; ++i) {
sprintf(key, "%" PRIx64 "", results[i-1]);
results[i] = old_fnv_1a(key);
}
return results;
}static uint64_t old_fnv_1a(const char* key) {
// FNV-1a hash (http://www.isthe.com/chongo/tech/comp/fnv/)
int i, len = strlen(key);
uint64_t h = 14695981039346656073ULL; // FNV_OFFSET 64 bit
for (i = 0; i < len; ++i){
h = h ^ (unsigned char) key[i];
h = h * 1099511628211ULL; // FNV_PRIME 64 bit
}
return h;
}
```If using only older Bloom Filters, then you can update the // FNV_OFFSET 64 bit
to use `14695981039346656073ULL`