Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bartongroup/KF_arabidopsis-GRNA

The scripts bundle included with the manuscript.
https://github.com/bartongroup/KF_arabidopsis-GRNA

Last synced: about 2 months ago
JSON representation

The scripts bundle included with the manuscript.

Awesome Lists containing this project

README

        

# KF_arabidopsis-GRNA
Scripts and commands for reproducing the analysis in ["How well do RNA-Seq differential gene expression tools perform in a eukaryote with a complex transcriptome?", Froussios, Schurch, Mackinnon, Gierlinski, Duc, Simpson & Barton
doi:10.1101/090753](https://doi.org/10.1101/090753)

# REQUIREMENTS:

How you install these requirements and make them accessible in your PATH is up to you.

1. Sun Grid Engine computing queue manager (some of our scripts internally submit tasks to a computing cluster)
2. R (3.2.2) with: lattice, ColourBrewer, PoissonSeq, edger, limma, deseq, deseq2, degseq, bayseq, ebseq, noiseq, samseq
3. PLplot
4. Perl (5.10.1) with: DRMAAc, PDL, PDL::Graphics::PLplot, DBI, Statistics::R, Devel::Size, Math::CDF, Time::HiRes
5. Python 2.7 with: numpy, scipy, drmaa, pysqlite
6. Python 3 with: pandas
7. STAR (2.5.0)
8. subread (1.6.1)
9. SAMtools (1.7)

Environment variables (assuming Unix/Bash):

export PROJECTROOT=${HOME}/PROJECTS/AtGRNA
export PERLROOT=${HOME}/perl5/perlbrew/perls/perl-5.10.1/
export LOCALEXECROOT=${HOME}/local_installs

export LD_LIBRARY_PATH=${SGE_ROOT}/lib/`${SGE_ROOT}/util/arch`
export DRMAA_LIBRARY_PATH=${LD_LIBRARY_PATH}/libdrmaa.sa
export PYTHONPATH=${PROJECTROOT}/analysis:${PROJECTROOT}/analysis/grnascripts/Modules
export PERL5LIB=${PROJECTROOT}/analysis/grnascripts/Modules:${PROJECTROOT}/analysis/rnascripts:${PERLROOT}/lib/5.10.1:${PERL5ROOT}/lib/site_perl/5.10.1:${PERL5LIB}

You will likely need to change the paths in the above variables to match your system, especially the first three.

# PROCESSING STEPS

Commands are executed from the base directory of the code distribution.

## Setup

First, create a project directory and navigate into it. Then clone this repository, get the Araport 11 *Arabidopsis thaliana* annotation and the TAIR10 *A. thaliana* genome assembly, and the raw read files from ArrayExpress.

mkdir AtGRNA
cd AtGRNA
git clone [email protected]:bartongroup/KF_arabidopsis-GRNA.git ./
mkdir ./genome
ln -s ~/GENOMES/Arabidopsis_thaliana/Annotations/Araport-11/Araport11_genes.20151202.gff3 ./genome
ln -s ~/GENOMES/Arabidopsis_thaliana/Annotations/Araport-11/Araport11_genes.20151202.gtf ./genome
ln -s ~/GENOMES/Arabidopsis_thaliana/Annotations/Araport-11/At_tair10.fa ./genome
mkdir fastq-unlev

Place or link the FASTQ files into the above subdirectory. Rename them AtWT_1.fastq, ...etc..., AtWT_17.fastq . Then we need to modify the chromosome labels in the annotation files to match those used in the FASTQ files.

perl -e 'while(<>){~s/^Chr//g; print}' ./genome/Araport11_genes.20151202.gff3 > tmp.gff3
perl -e 'while(<>){~s/^C/Pt/g; print}' tmp.gff3 > tmp2.gff3
perl -e 'while(<>){~s/^M/Mt/g; print}' tmp2.gff3 > ./genome/At_araport11.gff3
perl -e 'while(<>){~s/^Chr//g; print}' ./genome/Araport11_genes.20151202.gtf > tmp.gtf
perl -e 'while(<>){~s/^C/Pt/g; print}' tmp.gtf > tmp2.gtf
perl -e 'while(<>){~s/^M/Mt/g; print}' tmp2.gtf > ./genome/At_araport11.gtf
rm ./tmp*

## STAR alignment and featureCounts gene expression

Make the STAR index, align the raw FASTQdata, count the reads mapping to genes.

mkdir ./starindex
mkdir ./starindex/At_araport11_99bp
qsub -V -cwd -pe smp 8 -N staridx -b y STAR --runThreadN 8 --runMode genomeGenerate --genomeDir ./starindex/At_araport11_99bp --genomeFastaFiles ./genome/At_tair10.fa --sjdbGTFfile ./genome/At_araport11.gtf --sjdbOverhang 99
mkdir sam-unlev
qsub -V -cwd -pe smp 16 -N staral-unlev -t 1-17 ./analysis/star_array.sh -X STAR -c AtWT -i fastq-unlev -a At_araport11.gtf -n At_araport11_99bp -o sam-unlev -t 16
python3 ./analysis/fileutilities.py T ./sam-unlev/ --dir final | python3 analysis/sequtilities.py P --StarFinalLogs tab -v > ./sam-unlev/AtWT-unlev_summary.tsv
mkdir ./featurecounts-unlev
qsub -V cwd -pe smp 4 -N featCnt-unlev -t 1-17 ./analysis/featureCounts_array.sh -X featureCounts -c AtWT -a At_araport11.gtf -i sam-unlev -o featurecounts-unlev -f exon -g gene_id -r 2 -t 4

Collect all the read counts in a single table to use downstream

mkdir ./combined_counts
python3 ./analysis/fileutilities.py T ./featurecounts-unlev --dir "tsv$" | perl -e 'while(<>){~s/__Aligned.out.bam.exon\n/\n/;print}' > ./featurecounts-unlev/AtWT-unlev.list
python3 ./analysis/fileutilities.py L ./featurecounts-unlev/AtWT-unlev.list --cols \-1 -li | perl -e 'while(<>){~s/_\|-1//g;print}' > combined_counts/AtWT-unlev_raw.tsv

## Calculating the correlations between replicates

mkdir ./results
Rscript ./analysis/correlations.R AtWT-unlev_raw.tsv > results/AtWT-unlev_raw.tsv_cors.csv
Rscript ./analysis/levelplot.R results/AtWT-unlev_raw.tsv_cors.tsv

## FDR WT v WT Differential Gene expression (DGE)

This section uses code from the original [Schurch et. al. 2016](https://rnajournal.cshlp.org/content/22/6/839.long) paper to peform WT vs WT DGE calculations for selections of 3-7 replicates in each 'condition', boortstrapped 100 times.First we get the gene identifiers, setup some sub directories and the readcounts for each replicate.

python3 ./analysis/fileutilities.py T ./combined_counts/AtWT-unlev_raw.tsv -r --cols 0 > At_genes-h.txt
mkdir DGE_FDR_in
mkdir ./DGE_FDR_in/AtWTa
mkdir ./DGE_FDR_in/AtWTb
mkdir DGE_FDR_out
python3 ./analysis/fileutilities.py L ./featurecounts-unlev/AtWT-unlev.list -rl --cols 0 6 --out DGE_FDR_in/AtWTa "" '.gbgout'
python3 ./analysis/fileutilities.py L ./featurecounts-unlev/AtWT-unlev.list -rl --cols 0 6 --out DGE_FDR_in/AtWTb "" '.gbgout'

Then we exclude the "bad" replicate 11.

rm DGE_FDR_in/AtWTa/AtWT_11.gbgout DGE_FDR_in/AtWTb/AtWT_11.gbgout

Then we perform the DGE bootstrapping...

bash ./analysis/loop.sh -f 2 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_edgeR_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_edgeR_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/edgeR.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-edgeR -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_edgeRglm_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_edgeRglm_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/edgeRglm.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-edgeRglm -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_deseq2_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_deseq2_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/deseq2.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-deseq2 -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_deseq_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_deseq_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/deseq.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-deseq -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_bayseq_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_bayseq_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/bayseq.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-bayseq -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_degseq_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_degseq_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/degseq.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-degseq -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_ebseq_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_ebseq_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/ebseq.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-ebseq -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_limma_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_limma_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/limma.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-limma -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_samseq_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_samseq_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/samseq.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-samseq -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_poissonseq_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_poissonseq_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/poissonseq.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-poissonseq -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`
bash ./analysis/loop.sh -f 3 -t 7 python ./analysis/grnascripts/Bootstrapping/generic_wrapper.py -o ${PROJECTROOT}/DGE_FDR_out/AtWT_noiseq_100_{val}.sqlite -l ${PROJECTROOT}/DGE_FDR_out/AtWT_noiseq_100_{val}.log -k {val} -r ${PROJECTROOT}/analysis/grnascripts/DE_tool_scripts/noiseq.R --tmpdir=${PROJECTROOT}/NOBACK/tmp-noiseq -n package:default -d ${PROJECTROOT}/DGE_FDR_in -a ${PROJECTROOT}/genome/At_araport11.gff3 -b 100 --precounts --gbgfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/group_by_gene.pl --agncfile ${PROJECTROOT}/analysis/grnascripts/Bootstrapping/add_gene_name_column.pl --samtoolspath `which samtools` --Rpath `which Rscript`

With that done we can compute the FDR stats and plot them for the paper...

mkdir ./DGE_FDR_powerstats
source ./analyis/loop.sh -v bayseq -v deseq1 -v deseq2 -v degseq -v edger -v edgerglm -v ebseq -v limma -v noiseq -v poissonseq -v samseq "python ./analysis/grnascripts/DE_tool_comparison/make_powerstats_db.pl -test={val} -testinfofile=${PROJECTROOT}/analysis/DGE_FDR_tests_samecond.txt -script=${PROJECTROOT}/analysis/grnascripts/DE_tool_comparison/one_bs_powerstats.pl -genlist=At_genes-h.txt -powerdir=DGE_FDR_powerstats -reffcfile=${PROJECTROOT}/analysis/DGE_FDR_dummy-truth.tsv -maxn=7"
perl ./analysis/grnascripts/Plotting/compare_null.pl -psfile=results/dge-fdr_bay-deg-de1-de2-eb-edger-eglm-limma-noi-pois-sam.ps -testinfofile=${PROJECTROOT}/analysis/DGE_FDR_tests_samecond.txt -dir=DGE_FDR_powerstats -maxy=1 -tests=bayseq,degseq,deseq1,deseq2,ebseq,edger,edgerglm,limma,noiseq,poissonseq,samseq

## Normalising replicates by sampling reads

Here we downsample the replicates to the lowest replicate so that we can use statistical tests of goodness-of-fit to distributions that that require integer counts. We then Align the data, and get the gene counts (cluding subsetting the replicates for the 'less noisy' set comparison we make in the paper).

mkdir fastq-lev
python3 ./analysis/fileutilities.py T ./sam-unlev/AtWT-unlev_summary.tsv --cols 0 2 -rl | perl -e 'while(<>){~s/_/\t/g;print}' > ./combined_counts/AtWT_readcount.dat
qsub -cwd -V -t 1-17 ./analysis/levelling_array.sh -X analysis/levelling.pl -c AtWT -p 1 -i fastq-unlev -o fastq-lev -n combined_counts/AtWT_readcount.dat
mkdir sam-lev
qsub -V -cwd -pe smp 16 -N staral-lev -t 1-17 ./analysis/star_array.sh -X STAR -c AtWT -i fastq-lev -a At_araport11.gtf -n At_araport11_99bp -o sam-lev -t 16
mkdir featurecounts-lev
qsub -V cwd -pe smp 4 -N featCnt-lev -t 1-17 ./analysis/featureCounts_array.sh -X featureCounts -c AtWT -a At_araport11.gtf -i sam-lev -o featurecounts-lev -f exon -g gene_id -r 2 -t 4
python3 ./analysis/fileutilities.py T ./featurecounts-lev --dir "tsv$" | python3 analysis/fileutilities.py P --cols \-1 -lri > ./combined_counts/AtWT-lev_raw.tsv

Collect the counts of the less "noisy" replicates, and for an equally-sized "control" group that includes the "noisy" replicates, to exclude the influence of the number of replicates.

python3 ./analysis/fileutilities.py T ./combined_counts/AtWT-lev_raw.tsv -ri --cols 1 2 3 4 5 6 7 15 16 17 > ./combined_counts/AtWT-levN_raw.tsv
python3 ./analysis/fileutilities.py T ./combined_counts/AtWT-lev_raw.tsv -ri --cols 8 9 10 11 12 13 14 15 16 17 > ./combined_counts/AtWT-levC_raw.tsv

## Goodness-of-fit distribution tests

On this data we not run the good-ness of fit tests for the distributions and plot the results for the figures in the paper.

ln -s /.analysis/defs.dat ./
qsub -V -cwd -b y perl ./analysis/rnascripts/one_nb_test.pl -batch=1 -batchsize=33851 -outfile=AtWT-lev_nbtest_m_deseq.dat -stat=m -cond=AtWT-lev -norm=deseq -nonzero=1 -type=raw -test=meintanis -ncrit=30 -maxn=10000000
bash ./analysis/loop.sh -v nb -v norm -v lnorm -v pois 'perl ./analysis/rnascripts/distribution_test.pl -dist={val} -psfile=results/AtWT_{val}_test.ps -cond=AtWT-lev -multicor=bh'

Do the same for the "non-noisy" and "control" subsets as well

qsub -V -cwd -b y perl ./analysis/rnascripts/one_nb_test.pl -batch=1 -batchsize=33851 -outfile=AtWT-levN_nbtest_m_deseq.dat -stat=m -cond=AtWT-levN -norm=deseq -nonzero=1 -type=raw -test=meintanis -ncrit=30 -maxn=10000000
bash ./analysis/loop.sh -v nb -v norm -v lnorm -v pois 'perl ./analysis/rnascripts/distribution_test.pl -dist={val} -psfile=results/AtWTn_{val}_test.ps -cond=AtWT-levN -multicor=bh'
qsub -V -cwd -b y perl ./analysis/rnascripts/one_nb_test.pl -batch=1 -batchsize=33851 -outfile=AtWT-levC_nbtest_m_deseq.dat -stat=m -cond=AtWT-levC -norm=deseq -nonzero=1 -type=raw -test=meintanis -ncrit=30 -maxn=10000000
bash ./analysis/loop.sh -v nb -v norm -v lnorm -v pois 'perl ./analysis/rnascripts/distribution_test.pl -dist={val} -psfile=results/AtWTc_{val}_test.ps -cond=AtWT-levC -multicor=bh'

And thats it.