Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bashmocha/cs50-ai

Project submissions for Harvard CS50's Introduction to Artificial Intelligence with Python
https://github.com/bashmocha/cs50-ai

ai cs50 cs50ai machine-learning neural-network nlp-parsing nltk-library optimization parser python

Last synced: 19 days ago
JSON representation

Project submissions for Harvard CS50's Introduction to Artificial Intelligence with Python

Awesome Lists containing this project

README

        

# CS50-AI

Projects for [CS50's Introduction to Artificial Intelligence with Python](http://cs50.harvard.edu/ai/).

See [CS50's Academic Honesty rules](https://cs50.harvard.edu/college/2021/fall/syllabus/#academic-honesty).

## Projects
- Search:
- [Degrees](https://github.com/CheesyFrappe/cs50-ai/tree/main/0.Search/degrees) : Program that determines how many “degrees of separation” apart two actors are, based on [IMBb](https://imdb.com)
- [Tic-Tac-Toe](https://github.com/CheesyFrappe/cs50-ai/tree/main/0.Search/tictactoe) : Using Minimax game theory, implementation of an AI to play Tic-Tac-Toe optimally.
- Knowledge:
- [Knights](https://github.com/CheesyFrappe/cs50-ai/tree/main/1.Knowledge/knights) : Solves three classic Knights and Knave Puzzles using Symbolic Logic.
- [Minesweeper](https://github.com/CheesyFrappe/cs50-ai/tree/main/1.Knowledge/minesweeper) : AI to play Minesweeper.
- Uncertainty:
- [PageRank](https://github.com/CheesyFrappe/cs50-ai/tree/main/2.Uncertainty/pagerank) : Simulates Google's algorithm of ranking different webpages by relevancy.
- [Heredity](https://github.com/CheesyFrappe/cs50-ai/tree/main/2.Uncertainty/heredity) : Implements a genetic-like algorithm estimating a hidden trait of having a faulty gene based on a visible disability, hearing loss in this case.
- Optimization:
- [Crossword](https://github.com/CheesyFrappe/cs50-ai/tree/main/3.Optimization/crossword) : Implements an AI generating crosswords given a template and a dictionary of words.
- Learning:
- [Shopping](https://github.com/CheesyFrappe/cs50-ai/tree/main/4.Learning/shopping) : Features an AI to predict whether a customer is likely to complete a purchase with a given csv dataset.
- [Nim](https://github.com/CheesyFrappe/cs50-ai/tree/main/4.Learning/nim) : Implements an AI agent which learns to play the game of NIM, ie. two players take away rings from several towers, last one to take away a ring loses.
- Neural Networks:
- [Traffic](https://github.com/CheesyFrappe/cs50-ai/tree/main/5.Neural%20Networks/traffic) : Loads data from a given dataset; trains and evaluates a simple computer vision neural network that classifies road signs for automated driving.
- Language:
- [Parser](https://github.com/CheesyFrappe/cs50-ai/tree/main/6.Language/parser) : Uses the `nltk` library to parse sentences into its basic noun phrase components.
- [Questions](https://github.com/CheesyFrappe/cs50-ai/tree/main/6.Language/questions) : Parses datasets / corpuses of data by n-grams to understand the word frequencies and meanings. Then, it answers questions with likely answer-sentences from the source dataset.