Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bat/UltraNest.jl
Julia wrapper for UltraNest: advanced nested sampling for model comparison and parameter estimation
https://github.com/bat/UltraNest.jl
Last synced: 3 months ago
JSON representation
Julia wrapper for UltraNest: advanced nested sampling for model comparison and parameter estimation
- Host: GitHub
- URL: https://github.com/bat/UltraNest.jl
- Owner: bat
- License: other
- Created: 2020-12-23T10:49:24.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2022-03-14T10:08:44.000Z (over 2 years ago)
- Last Synced: 2024-07-10T19:16:06.425Z (4 months ago)
- Language: Julia
- Size: 398 KB
- Stars: 6
- Watchers: 4
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- awesome-sciml - bat/UltraNest.jl: Julia wrapper for UltraNest: advanced nested sampling for model comparison and parameter estimation
README
# UltraNest.jl
[![Documentation for stable version](https://img.shields.io/badge/docs-stable-blue.svg)](https://bat.github.io/UltraNest.jl/stable)
[![Documentation for development version](https://img.shields.io/badge/docs-dev-blue.svg)](https://bat.github.io/UltraNest.jl/dev)
[![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md)
[![Build Status](https://github.com/bat/UltraNest.jl/workflows/CI/badge.svg?branch=main)](https://github.com/bat/UltraNest.jl/actions?query=workflow%3ACI)
[![Codecov](https://codecov.io/gh/bat/UltraNest.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/bat/UltraNest.jl)## Documentation
* [Documentation for stable version](https://bat.github.io/UltraNest.jl/stable)
* [Documentation for development version](https://bat.github.io/UltraNest.jl/dev)This is a Julia wrapper for Python nested sampling package
[UltraNest](https://github.com/JohannesBuchner/UltraNest).Nested sampling allows Bayesian inference on arbitrary user-defined likelihoods. In particular, posterior probability distributions on model parameters are constructed, and the marginal likelihood ("evidence") Z is computed. The former can be used to describe the parameter constraints of the data, the latter can be used for model comparison (via *Bayes factors*) as a measure of the prediction parsimony of a model.
UltraNest provides novel, advanced techniques (see [how it works](https://johannesbuchner.github.io/UltraNest/method.html)). They are especially remarkable for being free of tuning parameters and theoretically justified. Beyond that, UltraNest has support for Big Data sets and high-performance computing applications.