Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bayer-science-for-a-better-life/pKAI
pKAI: a fast and interpretable deep learning approach to accurate electrostatics-driven pKa prediction
https://github.com/bayer-science-for-a-better-life/pKAI
Last synced: 13 days ago
JSON representation
pKAI: a fast and interpretable deep learning approach to accurate electrostatics-driven pKa prediction
- Host: GitHub
- URL: https://github.com/bayer-science-for-a-better-life/pKAI
- Owner: bayer-science-for-a-better-life
- License: mit
- Created: 2020-12-03T09:45:46.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2021-09-16T09:48:09.000Z (over 3 years ago)
- Last Synced: 2024-09-26T02:01:37.223Z (4 months ago)
- Language: Python
- Homepage:
- Size: 25.4 MB
- Stars: 27
- Watchers: 5
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- top-pharma50 - **bayer-science-for-a-better-life/pKAI** - driven pKa prediction<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 24 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 6 <img src='https://github.com/HubTou/topgh/blob/main/icons/code.png'> Python <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> MIT License <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2021-09-16 09:48:09 | (Ranked by starred repositories)
- top-pharma50 - **bayer-science-for-a-better-life/pKAI** - driven pKa prediction<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 24 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 6 <img src='https://github.com/HubTou/topgh/blob/main/icons/code.png'> Python <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> MIT License <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2021-09-16 09:48:09 | (Ranked by starred repositories)
README
[![PyPI version](https://badge.fury.io/py/pKAI.svg)](https://badge.fury.io/py/pKAI) [![PyPI - Downloads](https://img.shields.io/pypi/dm/pKAI)](https://badge.fury.io/py/pKAI)
# pKAI
A fast and interpretable deep learning approach to accurate electrostatics-driven pKa prediction
```
@article{pkai,
author = {Reis, Pedro B. P. S. and Bertolini, Marco and Montanari, Floriane and Machuqueiro, Miguel and Clevert, Djork-Arné},
title = {pKAI: A fast and interpretable deep learning approach to accurate electrostatics-driven pKa prediction},
note = {in preparation}
}
```### Installation & Basic Usage
We recommend installing pKAI on a conda enviroment. The pKAI+ model will be downloaded on the first execution and saved for subsequent runs.
```
python3 -m pip install pKAIpKAI
```It can also be used as python function,
```
from pKAI.pKAI import pKAIpks = pKAI(pdb)
```
where each element of the returned list is a tuple of size 4. (chain, resnumb, resname, pk)## pKAI+ vs pKAI models
pKAI+ (default model) aims to predict experimental pKa values from a single conformation. To do such, the interactions characterized in the input structure are given less weight and, as a consequence, the predictions are closer to the pKa values of the residues in water. This effect is comparable to an increase in the dielectric constant of the protein in Poisson-Boltzmann models. In these models, the dielectric constant tries to capture, among others, electronic polarization and side-chain reorganization. When including conformational sampling explicitly, one should use a lower value for the dielectric constant of the protein. Likewise, one should use pKAI -- instead of pKAI+ -- as in this model there is no penalization of the interactions' impact on the predicted pKa values.
tl;dr version
- use pKAI+ for pKa predictions arising from a single structure
- use pKAI for pKa predictions arising from multiple conformationsChange the model to be used in the calculation by evoking the `model` argument:
```
pKAI --model pKAI
```## Benchmark
Performed on 736 experimental values taken from the PKAD database1.
| Method | RMSE | MAE | Quantile 0.9 | Error < 0.5 (%) |
|-----------------------|------|------|---------------|------------------|
| Null2 | 1.09 | 0.72 | 1.51 | 52.3 |
| PROPKA3 | 1.11 | 0.73 | 1.58 | 51.1 |
| PypKa4 | 1.07 | 0.71 | 1.48 | 52.6 |
| pKAI | 1.15 | 0.75 | 1.66 | 49.3 |
| pKAI+ | 0.98 | 0.64 | 1.37 | 55.0 |[1] Pahari, Swagata et al. "PKAD: a database of experimentally measured pKa values of ionizable groups in proteins." doi:10.1093/database/baz024
[2] Thurlkill, Richard L et al. “pK values of the ionizable groups of proteins.” doi:10.1110/ps.051840806
[3] Olsson, Mats H M et al. “PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.” doi:10.1021/ct100578z
[4] Reis, Pedro B P S et al. “PypKa: A Flexible Python Module for Poisson-Boltzmann-Based pKa Calculations.” doi:10.1021/acs.jcim.0c00718
## License
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
## Contacts
Please submit a github issue to report bugs and to request new features. Alternatively, you may email the developer directly.