Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bcmi/Foreground-Object-Search-Dataset-FOSD

[ICCV 2023] The datasets and code used in our paper "Foreground Object Search by Distilling Composite Image Feature", ICCV2023.
https://github.com/bcmi/Foreground-Object-Search-Dataset-FOSD

foreground-object-search image-composition

Last synced: about 1 month ago
JSON representation

[ICCV 2023] The datasets and code used in our paper "Foreground Object Search by Distilling Composite Image Feature", ICCV2023.

Awesome Lists containing this project

README

        

# Foreground Object Search Dataset FOSD

This is the official repository for the following paper:

> **Foreground Object Search by Distilling Composite Image Feature** [[arXiv]](https://arxiv.org/pdf/2308.04990.pdf)

>
> Bo Zhang, Jiacheng Sui, Li Niu

> Accepted by **ICCV 2023**.

**Our model has been integrated into our image composition toolbox libcom https://github.com/bcmi/libcom. Welcome to visit and try \(^▽^)/**

## Requirements

- See requirements.txt for other dependencies.

## Data Preparing

- Download Open-Images-v6 trainset from [Open Images V6 - Download](https://storage.googleapis.com/openimages/web/download_v6.html) and unzip them. We recommend that you use FiftyOne to download the Open-Images-v6 dataset. After the dataset is downloaded, the data structure of Open-Images-v6 dataset should be as follows.

```
Open-Images-v6
├── metadata
├── train
│   ├── data
│ │ ├── xxx.jpg
│ │ ├── xxx.jpg
│ │ ...
│ │
│   └── labels
│   └── masks
│   │ ├── 0
│ │ ├── xxx.png
│ │ ├── xxx.png
│ │ ...
│   │ ├── 1
│  │ ...
│ │
│ ├── segmentations.csv
│ ...
```

- Download S-FOSD annotations, R-FOSD annotations and background images of R-FOSD from [Baidu disk](https://pan.baidu.com/s/1LF_4LbwxbxSBy-zqBkgzDw) (code: 3wvf) and save them to the appropriate location under the `data` directory according to the data structure below.

- Generate backgrounds and foregrounds.

```
python prepare_data/fetch_data.py --open_images_dir
```

The data structure is like this:

```
data
├── metadata
│   ├── classes.csv
│   └── category_embeddings.pkl
├── test
│   ├── bg_set1
│ │ ├── xxx.jpg
│ │ ├── xxx.jpg
│ │ ...
│ │
│   ├── bg_set2
│ │ ├── xxx.jpg
│ │ ├── xxx.jpg
│ │ ...
│ │
│   ├── fg
│ │ ├── xxx.jpg
│ │ ├── xxx.jpg
│ │ ...
│   └── labels
│   └── masks
│   │ ├── 0
│ │ ├── xxx.png
│ │ ├── xxx.png
│ │ ...
│   │ ├── 1
│  │ ...
│ │
│ ├── test_set1.json
│ ├── test_set2.json
│ └── segmentations.csv

└── train
   ├── bg
│ ├── xxx.jpg
│ ├── xxx.jpg
│ ...

    ├── fg
│ ├── xxx.jpg
│ ├── xxx.jpg
│ ...

   └── labels
   └── masks
   │ ├── 0
│ ├── xxx.png
│ ├── xxx.png
│ ...
   │ ├── 1
  │ ...

├── train_sfosd.json
├── train_rfosd.json
├── category.json
├── number_per_category.csv
└── segmentations.csv
```

## Pretrained Model

We provide the checkpoint ([Baidu disk](https://pan.baidu.com/s/1_Dh2w08AAqdsw8Cb3l4nfQ) code: 7793) for the evaluation on S-FOSD dataset and checkpoint ([Baidu disk](https://pan.baidu.com/s/17jq1FWKSsEngp7scB4357Q) code: 6kme) for testing on R-FOSD dataset. By default, we assume that the pretrained model is downloaded and saved to the directory `checkpoints`.

## Testing

### Evaluation on S-FOSD Dataset

```
python evaluate/evaluate.py --testOnSet1
```

### Evaluation on R-FOSD Dataset

```
python evaluate/evaluate.py --testOnSet2
```

The evaluation results will be stored to the directory `eval_results`.

If you want to save top 20 results on R-FOSD, add `--saveTop20 ` parameter. The top 20 results on R-FOSD will be stored to the directory `top20` by default.

If you want to save the model's prediction scores on R-FOSD, add `--saveScores` parameter. The model scores on R-FOSD will be stored to the directory `model_scores` by default.

## Training

Please download the pretrained teacher models from [Baidu disk](https://pan.baidu.com/s/1D_zT326PLXZ-C0j5mcCY6A) (code: 40a5) and save the model to directory `checkpoints/teacher`.

To train a new sfosd model, you can simply run:

```
.train/train_sfosd.sh
```

Similarly, train a new rfosd model by:

```
.train/train_rfosd.sh
```

## FOS Score

Our model can be used to evaluate the compatibility between foreground and background in terms of geometry and semantics.

To launch the demo, you can run:

```
python demo/demo_ui.py
```

Here are three steps you can take to get a compatibility score for the foreground and the background.

1) Upload a background image in the left box of the first row

2) Click the left-top point and the right-bottom point of the bounding box in the right box of the first row

3) Upload a foreground image in the left box of the second row, then click 'run' button.

## Other Resources

+ [Awesome-Foreground-Object-Search](https://github.com/bcmi/Awesome-Foreground-Object-Search)
+ [Awesome-Image-Composition](https://github.com/bcmi/Awesome-Image-Composition)

## License

Both background and foreground images of S-FOSD belong to Open-Images. The background images of R-FOSD are collected from Internet and are licensed under a Creative Commons Attribution 4.0 License.