Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bcol23/EXAM-MXNet
An unofficial MXNet implementation of the AAAI-19 paper "Explicit Interaction Model towards Text Classification"
https://github.com/bcol23/EXAM-MXNet
aaai2019 mxnet text-classification
Last synced: 2 months ago
JSON representation
An unofficial MXNet implementation of the AAAI-19 paper "Explicit Interaction Model towards Text Classification"
- Host: GitHub
- URL: https://github.com/bcol23/EXAM-MXNet
- Owner: bcol23
- License: mit
- Created: 2019-01-21T03:09:06.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-05-31T11:08:57.000Z (over 5 years ago)
- Last Synced: 2024-08-01T22:41:47.526Z (5 months ago)
- Topics: aaai2019, mxnet, text-classification
- Language: Python
- Size: 6.84 KB
- Stars: 4
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-MXNet - EXAM
README
# EXAM-MXNet
An unofficial MXNet implementation of [Explicit Interaction Model towards Text Classification](https://arxiv.org/pdf/1811.09386.pdf)Official one is [here](https://github.com/NonvolatileMemory/AAAI_2019_EXAM).
## Requirements
- mxnet
- numpy
- pandas
- scikit-learn
- tqdm## Instruction
Put the [Zhihu Kanshan Cup](https://biendata.com/competition/zhihu/) data (specifically 'question_train_set.txt', 'question_topic_train_set.txt', 'topic_info.txt' and 'word_embedding.txt') into the *data* folder or specify the path.
Run
```
$ python exam.py
```Alternatively you can use the Jupyter notebook.