Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bdilday/GeomMLBStadiums
Geoms to draw MLB stadiums in ggplot2
https://github.com/bdilday/GeomMLBStadiums
baseball ggplot2-geoms r
Last synced: about 2 months ago
JSON representation
Geoms to draw MLB stadiums in ggplot2
- Host: GitHub
- URL: https://github.com/bdilday/GeomMLBStadiums
- Owner: bdilday
- License: other
- Created: 2018-08-09T21:39:36.000Z (over 6 years ago)
- Default Branch: main
- Last Pushed: 2023-09-22T00:59:33.000Z (over 1 year ago)
- Last Synced: 2024-08-03T21:02:56.668Z (5 months ago)
- Topics: baseball, ggplot2-geoms, r
- Language: R
- Size: 1.85 MB
- Stars: 57
- Watchers: 6
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.Rmd
- License: LICENSE
Awesome Lists containing this project
- awesome-r-dataviz - GeomMLBStadiums - Geoms to draw MLB stadiums in ggplot2. (ggplot / Domain-specific)
README
---
output: github_document
---```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
# fig.path = "README-",
fig.height = 6,
fig.width = 6,
fig.units = "in"
)
```# GeomMLBStadiums
This package defines a couple of Geoms to draw MLB stadiums in ggplot2. It also provides a Geom to draw a "spraychart" - `x` and `y` locations of batted balls with a stadium overlay.
## Example use
### Install from github and load the necessary libraries
``` {r echo=FALSE, message=FALSE, warning=FALSE}
library(GeomMLBStadiums)
library(ggplot2)
library(dplyr)
`````` {r eval=FALSE, message=FALSE}
devtools::install_github("bdilday/GeomMLBStadiums")
library(GeomMLBStadiums)
library(ggplot2)
library(dplyr)
```### The stadium data
When you load the `GeomMLBStadiums` package it will attach the stadium paths as a data frame, `MLBStadiumsPathData`
``` {r}
head(MLBStadiumsPathData)
```The data comprise the 30 current MLB stadiums, in addition to a "generic" stadium. The stadia are identified by team name, with the following conventions
``` {r}
unique(MLBStadiumsPathData$team)
```The segments are split up into `outfield_outer`, `outfield_inner`, `infield_inner`, `infield_outer`, `foul_lines`, and `home_plate`
``` {r}
unique(MLBStadiumsPathData$segment)
```### Coordinates
The stadium paths are in the system of the `hc_x` and `hc_y` coordinates of MLBAM. These are inverted (because they're based on a display device where `y=0` is at top, IIRC) which means by default the field gets displayed upside down. This package provides a helper function, `mlbam_xy_transformation`, that transforms these values to a system where y increases from bottom to top and home plate is located at `(0, 0)`.
``` {r}
set.seed(101)
batted_ball_data = data.frame(hc_x = rnorm(20, 125, 10),
hc_y = rnorm(20, 100, 20))head(batted_ball_data)
head(mlbam_xy_transformation(batted_ball_data))
summary(mlbam_xy_transformation(batted_ball_data))
```
### `geom_mlb_stadium`
This uses `geom_mlb_stadium`, which implicitly loads the `MLBStadiumsPathData` data, to plot the 30 current stadiums.
``` {r}
ggplot() +
geom_mlb_stadium(stadium_ids = "all_mlb",
stadium_segments = "all") +
facet_wrap(~team) +
coord_fixed() +
theme_void()
```An alternative way is to explicitly pass the data to `geom_path`.
``` {r}
MLBStadiumsPathData %>%
filter(team != 'generic') %>%
mutate(g=paste(team, segment, sep="_")) %>%
ggplot(aes(x, y)) +
geom_path(aes(group=g)) +
facet_wrap(~team) +
coord_fixed() +
theme_void()
```This shows the generic stadium, which is the default,
``` {r}
ggplot() +
geom_mlb_stadium(stadium_segments = "all") +
facet_wrap(~team) +
coord_fixed() +
theme_void()
```### `geom_spraychart`
This generates some simulated data.
``` {r}
# first generate the data
set.seed(101)
batted_ball_data = data.frame(hc_x = rnorm(20, 125, 10),
hc_y = rnorm(20, 100, 20))
batted_ball_data$team = rep(c("angels", "yankees"), each=10)
```This plots the data as a spraychart. By default it uses the "generic" stadium.
``` {r}
batted_ball_data %>%
ggplot(aes(x=hc_x, y=hc_y)) +
geom_spraychart()
```Add some styling using `theme_void` and `coord_fixed`
``` {r}
batted_ball_data %>%
ggplot(aes(x=hc_x, y=hc_y)) +
geom_spraychart() +
theme_void() +
coord_fixed()
```This transforms the data and the stadium before plotting, passes the team names in `stadium_ids`, draws all segments, and facets by field.
``` {r}
batted_ball_data %>% mlbam_xy_transformation() %>%
ggplot(aes(x=hc_x_, y=hc_y_, color=team)) +
geom_spraychart(stadium_ids = unique(batted_ball_data$team),
stadium_transform_coords = TRUE,
stadium_segments = "all") +
theme_void() +
coord_fixed() +
facet_wrap(~team) +
theme(legend.position = "bottom")
```You can make use of any of the other `ggplot2` functions, for example, contours from `stat_density2d`. The `mapping` argument for `geom_spraychart` gets passed to the underlying `geom_point`, as do any extra parameters passed into the `...` argument of `geom_spraychart`, e.g. `size=5` in the below.
``` {r}
batted_ball_data %>% mlbam_xy_transformation() %>%
ggplot(aes(x=hc_x_, y=hc_y_, color=team)) +
geom_spraychart(mapping = aes(shape=team),
stadium_ids = unique(batted_ball_data$team),
stadium_transform_coords = TRUE,
stadium_segments = "all", size=5) +
theme_void() +
coord_fixed() +
facet_wrap(~team) +
theme(legend.position = "bottom") +
stat_density2d(color='gray')
```