Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/beacandler/EATEN
EATEN: Entity-aware Attention for Single Shot Visual Text Extraction
https://github.com/beacandler/EATEN
Last synced: 2 months ago
JSON representation
EATEN: Entity-aware Attention for Single Shot Visual Text Extraction
- Host: GitHub
- URL: https://github.com/beacandler/EATEN
- Owner: beacandler
- Created: 2019-05-03T05:52:28.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-12-29T09:14:26.000Z (about 5 years ago)
- Last Synced: 2024-08-03T12:15:45.204Z (5 months ago)
- Size: 3.49 MB
- Stars: 173
- Watchers: 13
- Forks: 17
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# EATEN: Entity-aware Attention for Single Shot Visual Text Extraction
Accepted to ICDAR 2019 [arxiv](https://arxiv.org/abs/1909.09380#)
Authors: He Guo, Xiameng Qin, Jiaming Liu, Junyu Han, Jingtuo Liu and Errui Ding## Abstract
This repository is designed to provide an open-source dataset for Visual Text Extraction.## Samples
### Train ticket
#### Real images
![real1](./figures/real1.jpg)
![real2](./figures/real2.jpg)#### Synthetic images
##### Some clean images
![synth-easy](./figures/synth-easy.png)
##### Some hard images
![synth-hard](./figures/synth-hard.png)### Passport
##### Some images
![passport-easy](./figures/passport-easy.png)
##### Some hard images
![passport-hard](./figures/passport-hard.png)### Business card
![bc1](./figures/bc1.png)
![bc2](./figures/bc2.png)## Downloads
The dataset can be downloaded through the following link:
[baiduyun](https://pan.baidu.com/s/1HVMa_bpCeegticZVFOkJ5g), PASSWORD: e4z1Some details:
|scenes| number | size| Google Drive link |
|-------------------|:-------------------:|:---------------------:|:---------------------:|
|train ticket | 300k synth + 1.9 real| 13G|[dataset_trainticket.tar](https://drive.google.com/open?id=1zxu44zSBtBw9CZjIIVPfK0h9YqHfQKID)|
|passport | 100k synth |5.8G|[dataset_passport.tar](https://drive.google.com/open?id=11XhKsjqzZY6jBakkLDy8lywE3w37kPaC)|
|business card | 200k synth| 19G|[dataset_business.tar.0 ](https://drive.google.com/open?id=1irnwv8MqK9nCT_NqmnjHfQ8DlwdMwcBs)[dataset_business.tar.1 ](https://drive.google.com/open?id=16Y26c5VCBYx_CD7Mz3UR6rCbVclq7sRP)[dataset_business.tar.2 ](https://drive.google.com/open?id=1ilQC0cmLhW_N9sl6UbGQZHlk5p_H98Q4)[dataset_business.tar.3 ](https://drive.google.com/open?id=1URl4V8Zxgpl0jifkjIDjy-gMa5g3Jtsj)|
## Limitations&&Todo
- [A large of training data]
Todo:
1. Use CycleGan or domain adaptation to synth data to train EATEN.
2. Introduce datasets of STR to EATEN.
- [Generalization on complex scenes]
Todo:
1. Add bounding box annotations of ToIs to EATEN, such as [2019-ICCV-oral Towards Unconstrained End-to-End Text Spotting](http://openaccess.thecvf.com/content_ICCV_2019/papers/Qin_Towards_Unconstrained_End-to-End_Text_Spotting_ICCV_2019_paper.pdf).
- [Engineering]
1. Merge server decoder to one.
2. parallel decoding.