Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/beastbyteai/scikit-llm
Seamlessly integrate LLMs into scikit-learn.
https://github.com/beastbyteai/scikit-llm
chatgpt deep-learning llm machine-learning scikit-learn transformers
Last synced: 1 day ago
JSON representation
Seamlessly integrate LLMs into scikit-learn.
- Host: GitHub
- URL: https://github.com/beastbyteai/scikit-llm
- Owner: BeastByteAI
- License: mit
- Created: 2023-05-12T18:09:40.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2025-01-05T18:21:31.000Z (3 days ago)
- Last Synced: 2025-01-07T06:07:01.084Z (1 day ago)
- Topics: chatgpt, deep-learning, llm, machine-learning, scikit-learn, transformers
- Language: Python
- Homepage: https://beastbyte.ai/
- Size: 257 KB
- Stars: 3,398
- Watchers: 35
- Forks: 276
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# Scikit-LLM: Scikit-Learn Meets Large Language Models
Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.
## Installation 💾
```bash
pip install scikit-llm
```## Support us 🤝
You can support the project in the following ways:
- ⭐ Star Scikit-LLM on GitHub (click the star button in the top right corner)
- 💡 Provide your feedback or propose ideas in the [issues](https://github.com/iryna-kondr/scikit-llm/issues) section or [Discord](https://discord.gg/YDAbwuWK7V)
- 📰 Post about Scikit-LLM on LinkedIn or other platforms
- 🔗 Check out our other projects: Dingo, Falcon## Quick Start & Documentation 📚
Quick start example of zero-shot text classification using GPT:
```python
# Import the necessary modules
from skllm.datasets import get_classification_dataset
from skllm.config import SKLLMConfig
from skllm.models.gpt.classification.zero_shot import ZeroShotGPTClassifier# Configure the credentials
SKLLMConfig.set_openai_key("")
SKLLMConfig.set_openai_org("")# Load a demo dataset
X, y = get_classification_dataset() # labels: positive, negative, neutral# Initialize the model and make the predictions
clf = ZeroShotGPTClassifier(model="gpt-4")
clf.fit(X,y)
clf.predict(X)
```For more information please refer to the **[documentation](https://skllm.beastbyte.ai)**.
## Citation
You can cite Scikit-LLM using the following BibTeX:
```
@software{ScikitLLM,
author = {Iryna Kondrashchenko and Oleh Kostromin},
year = {2023},
publisher = {beastbyte.ai},
address = {Linz, Austria},
title = {Scikit-LLM: Scikit-Learn Meets Large Language Models},
url = {https://github.com/iryna-kondr/scikit-llm }
}
```