Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/beefsack/go-astar

Go implementation of the A* search algorithm
https://github.com/beefsack/go-astar

Last synced: about 2 months ago
JSON representation

Go implementation of the A* search algorithm

Awesome Lists containing this project

README

        

go-astar
========

**A\* pathfinding implementation for Go**

[![Build Status](https://travis-ci.org/beefsack/go-astar.svg?branch=master)](https://travis-ci.org/beefsack/go-astar)

The [A\* pathfinding algorithm](http://en.wikipedia.org/wiki/A*_search_algorithm) is a pathfinding algorithm noted for its performance and accuracy and is commonly used in game development. It can be used to find short paths for any weighted graph.

A fantastic overview of A\* can be found at [Amit Patel's Stanford website](http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html).

Examples
--------

The following crude examples were taken directly from the automated tests. Please see `path_test.go` for more examples.

### Key

* `.` - Plain (movement cost 1)
* `~` - River (movement cost 2)
* `M` - Mountain (movement cost 3)
* `X` - Blocker, unable to move through
* `F` - From / start position
* `T` - To / goal position
* `●` - Calculated path

### Straight line

```
.....~...... .....~......
.....MM..... .....MM.....
.F........T. -> .●●●●●●●●●●.
....MMM..... ....MMM.....
............ ............
```

### Around a mountain

```
.....~...... .....~......
.....MM..... .....MM.....
.F..MMMM..T. -> .●●●MMMM●●●.
....MMM..... ...●MMM●●...
............ ...●●●●●....
```

### Blocked path

```
............
.........XXX
.F.......XTX -> No path
.........XXX
............
```

### Maze

```
FX.X........ ●X.X●●●●●●..
.X...XXXX.X. ●X●●●XXXX●X.
.X.X.X....X. -> ●X●X.X●●●●X.
...X.X.XXXXX ●●●X.X●XXXXX
.XX..X.....T .XX..X●●●●●●
```

### Mountain climber

```
..F..M...... ..●●●●●●●●●.
.....MM..... .....MM...●.
....MMMM..T. -> ....MMMM..●.
....MMM..... ....MMM.....
............ ............
```

### River swimmer

```
.....~...... .....~......
.....~...... ....●●●.....
.F...X...T.. -> .●●●●X●●●●..
.....M...... .....M......
.....M...... .....M......
```

Usage
-----

### Import the package

```go
import "github.com/beefsack/go-astar"
```

### Implement Pather interface

An example implementation is done for the tests in `path_test.go` for the Tile type.

The `PathNeighbors` method should return a slice of the direct neighbors.

The `PathNeighborCost` method should calculate an exact movement cost for direct neighbors.

The `PathEstimatedCost` is a heuristic method for estimating the distance between arbitrary tiles. The examples in the test files use [Manhattan distance](http://en.wikipedia.org/wiki/Taxicab_geometry) to estimate orthogonal distance between tiles.

```go
type Tile struct{}

func (t *Tile) PathNeighbors() []astar.Pather {
return []astar.Pather{
t.Up(),
t.Right(),
t.Down(),
t.Left(),
}
}

func (t *Tile) PathNeighborCost(to astar.Pather) float64 {
return to.MovementCost
}

func (t *Tile) PathEstimatedCost(to astar.Pather) float64 {
return t.ManhattanDistance(to)
}
```

### Call Path function

```go
// t1 and t2 are *Tile objects from inside the world.
path, distance, found := astar.Path(t1, t2)
if !found {
log.Println("Could not find path")
}
// path is a slice of Pather objects which you can cast back to *Tile.
```

Authors
-------

Michael Alexander
Robin Ranjit Chauhan