Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ben-hayes/neural-waveshaping-synthesis

efficient neural audio synthesis in the waveform domain
https://github.com/ben-hayes/neural-waveshaping-synthesis

Last synced: 24 days ago
JSON representation

efficient neural audio synthesis in the waveform domain

Awesome Lists containing this project

README

        

neural waveshaping synthesis


real-time neural audio synthesis in the waveform domain




paper
website
colab
audio



by Ben Hayes, Charalampos Saitis, György Fazekas



This repository is the official implementation of [Neural Waveshaping Synthesis](https://benhayes.net/projects/nws/).

## Model Architecture

## Requirements

To install:

```setup
pip install -r requirements.txt
pip install -e .
```

We recommend installing in a virtual environment.

## Data

We trained our checkpoints on the [URMP](http://www2.ece.rochester.edu/projects/air/projects/URMP.html) dataset.
Once downloaded, the dataset can be preprocessed using `scripts/create_urmp_dataset.py`.
This will consolidate recordings of each instrument within the dataset and preprocess them according to the pipeline in the paper.

```bash
python scripts/create_urmp_dataset.py \
--gin-file gin/data/urmp_4second_crepe.gin \
--data-directory /path/to/urmp \
--output-directory /path/to/output \
--device cuda:0 # torch device string for CREPE model
```

Alternatively, you can supply your own dataset and use the general `create_dataset.py` script:

```bash
python scripts/create_dataset.py \
--gin-file gin/data/urmp_4second_crepe.gin \
--data-directory /path/to/dataset \
--output-directory /path/to/output \
--device cuda:0 # torch device string for CREPE model
```

## Training

To train a model on the URMP dataset, use this command:

```bash
python scripts/train.py \
--gin-file gin/train/train_newt.gin \
--dataset-path /path/to/processed/urmp \
--urmp \
--instrument vn \ # select URMP instrument with abbreviated string
--load-data-to-memory
```

Or to use a non-URMP dataset:
```bash
python scripts/train.py \
--gin-file gin/train/train_newt.gin \
--dataset-path /path/to/processed/data \
--load-data-to-memory
```