Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/benedekrozemberczki/awesome-graph-embedding

A collection of important graph embedding, classification and representation learning papers with implementations.
https://github.com/benedekrozemberczki/awesome-graph-embedding

attention-mechanism classification-algorithm deep-graph-kernels deepwalk graph-attention-model graph-attention-networks graph-classification graph-convolutional-networks graph-embedding graph-kernel graph-kernels graph-representation-learning graph2vec kernel-methods netlsd network-embedding node-embedding node2vec structural-attention weisfeiler-lehman

Last synced: 3 months ago
JSON representation

A collection of important graph embedding, classification and representation learning papers with implementations.

Awesome Lists containing this project

README

        

# Awesome Graph Classification
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
![License](https://img.shields.io/github/license/benedekrozemberczki/awesome-graph-embedding.svg?color=blue)
[![repo size](https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-graph-classification.svg)](https://github.com/benedekrozemberczki/awesome-graph-classification/archive/master.zip) [![benedekrozemberczki](https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)](https://twitter.com/intent/follow?screen_name=benrozemberczki)

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations.

Relevant graph classification benchmark datasets are available [[here]](https://github.com/shiruipan/graph_datasets).

Similar collections about [community detection](https://github.com/benedekrozemberczki/awesome-community-detection), [classification/regression tree](https://github.com/benedekrozemberczki/awesome-decision-tree-papers), [fraud detection](https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), [Monte Carlo tree search](https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and [gradient boosting](https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers) papers with implementations.



-------------------------------------------------

## Contents

1. [Matrix Factorization](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/matrix_factorization.md)
2. [Spectral and Statistical Fingerprints](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/fingerprints.md)
3. [Deep Learning](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/deep_learning.md)
4. [Graph Kernels](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/kernels.md)

-----------------------------------------------

**License**

- [CC0 Universal](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/LICENSE)